论文标题

在超级图和一些有限基团的超级图上

On the super graphs and reduced super graphs of some finite groups

论文作者

Dalal, Sandeep, Mukherjee, Sanjay, Patra, Kamal Lochan

论文摘要

对于有限的组$ g $,让$ b $是$ g $上的等价(平等,共轭或订单)关系,让$ a $为a(功率,增强功率或通勤)图,带有顶点套装$ g $。 $ b $ super $ a $ graph是一个简单的图形,带有顶点套装$ g $,如果它们在相同的$ b $ - 等价类中,或者它们的$ b $等值类中的元素在原始$ a $ a $ agraph中相邻,则两个顶点相邻。通过删除从$ b $ super $ a $ a $图的主导顶点(与所有其他顶点相邻)获得的图表称为降低的$ b $ super $ a $ a $ agraph。在本文中,对于$ b $ super $ a $图的某些对,我们表征了一对图相等的有限组。我们还表征了$ g $的订单超级通勤图$δ^o(g)$的主要顶点,并证明对于$ n \ geq 4 $,身份元素是$δ^o(s_n)$和$δ^o(a_n)$的唯一主要顶点。我们表征了$ n $的值,$ n $的值超级通勤图$Δ^o(s_n)^*$ of $ s_n $和还原订单超级通勤图$δ^o(a_n)^*$ a_n $的$ a_n)^*$。我们还证明,如果连接$δ^o(s_n)^*$(或$δ^o(a_n)^*$),则直径最多为$ 3 $,并且表明直径为$ 3 $,许多值的值为$n。$。

For a finite group $G$, let $B$ be an equivalence (equality, conjugacy or order) relation on $G$ and let $A$ be a (power, enhanced power or commuting) graph with vertex set $G$. The $B$ super $A$ graph is a simple graph with vertex set $G$ and two vertices are adjacent if either they are in the same $B$-equivalence class or there are elements in their $B$-equivalence classes that are adjacent in the original $A$ graph. The graph obtained by deleting the dominant vertices (adjacent to all other vertices) from a $B$ super $A$ graph is called the reduced $B$ super $A$ graph. In this article, for some pairs of $B$ super $A$ graphs, we characterize the finite groups for which a pair of graphs are equal. We also characterize the dominant vertices for the order super commuting graph $Δ^o(G)$ of $G$ and prove that for $n\geq 4$ the identity element is the only dominant vertex of $Δ^o(S_n)$ and $Δ^o(A_n)$. We characterize the values of $n$ for which the reduced order super commuting graph $Δ^o(S_n)^*$ of $S_n$ and the reduced order super commuting graph $Δ^o(A_n)^*$ of $A_n$ are connected. We also prove that if $Δ^o(S_n)^*$ (or $Δ^o(A_n)^*$) is connected then the diameter is at most $3$ and shown that the diameter is $3$ for many value of $n.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源