论文标题

用于流动纠正的体外生活系统

An in vitro living system for flow rectification

论文作者

Dou, Zhi, Hong, Liu, Li, Zhengwei, Chan, Fan Kiat, Bhosale, Yashraj, Aydin, Onur, Juarez, Gabriel, Saif, M. Taher A., Chamorro, Leonardo P., Gazzola, Mattia

论文摘要

小而有限的 - 可以利用流体惯性,从而从浸入式界面周围产生稳定的流量。在工程学中,外部高频驱动器(10 $^2 $ -10 $^5 $ Hz)允许这种惯性整流现象(称为粘性流)用于微米级设备,以精确流动控制,粒子操纵和空间控制的化学。但是,除了人工设置之外,与较低频率有关的大型生物系统也可以访问流媒体。然后,在1-10Hz范围内振荡纤毛和附属物的毫米大小的细菌或幼虫可能能够内源性地矫正周围的流动,以进行喂养或运动,从而消除了对外部执行器,tethers骨,tethers或tubings的需求。为了支持这一假设,我们在这里展示了一个体外生活系统,能够产生内源,自主和无助的流动流。经计算知情,我们的生物设备通过工程肌肉组织的循环收缩产生振荡流,以环的形式形成,并在微颗粒图像速度学设置中悬浮在流体中,以进行分析。对于自发性或光引起的低频肌肉收缩(2-4Hz),观察到与流媒体模拟一致的流动模式,分别说明了系统的自主权和可控性。因此,这项工作提供了无限制的毫米级生活系统中生物动力流的实验证据,展示了生物杂交技术在基本和应用流体机械方面的实用性。

Small - but finite - fluid inertia can be leveraged to generate steady flows out of liquid vibrations around an immersed interface. In engineering, external high-frequency drivers (10$^2$-10$^5$ Hz) allow this inertial rectification phenomenon, known as viscous streaming, to be employed in micron-scale devices for precise flow control, particle manipulation and spatially controlled chemistry. However, beyond artificial settings, streaming may also be accessed by larger-scale biological systems pertaining to lower frequencies. Then, millimeter-size bacteria or larvae that oscillate cilia and appendages in the 1-10Hz range may be able to endogenously rectify surrounding flows, for feeding or locomotion, removing the need for external actuators, tethers or tubings. In support of this hypothesis, here we demonstrate an in vitro living system able to produce streaming flows, endogenously, autonomously and unassisted. Computationally informed, our biological device generates oscillatory flows through the cyclic contractions of an engineered muscle tissue, shaped in the form of a ring and suspended in fluid within a Micro-Particle Image Velocimetry setup, for analysis. Flow patterns consistent with streaming simulations are observed for low-frequency muscle contractions (2-4Hz), either spontaneous or light-induced, illustrating system autonomy and controllability, respectively. Thus, this work provides experimental evidence of biologically powered streaming in untethered millimeter-scale living systems, showcasing the utility of bio-hybrid technology for fundamental and applied fluid mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源