论文标题

变形空间,重新捆扎束和基里洛夫角色公式

Deformation Spaces, Rescaled Bundles and the Kirillov Character Formula

论文作者

Braverman, Maxim, Sadegh, Ahmad Reza Haj Saeedi

论文摘要

在本文中,我们通过将矢量束$ e \ to V $重新缩放到V $的正常锥体$ \ text {dnc}(v,m)$上的变形上构造了平滑的向量束,该载波束构建了Spinor的构建Nigel Higson和Zelin Yi,在切实的Groupsoid上恢复了切实的捆绑包。我们还提供了它们的构造的模棱两可版本。作为主要应用程序,我们为Dirac-Type运算符的模棱两可的索引恢复了Kirillov字符公式。作为另一个应用程序,我们使用O. Mohsen最近获得的正常锥体的变形对Witten的描述和DE RHAM-DIRAC操作员的Novikov变形进行了模棱两可的概括。

In this paper, we construct a smooth vector bundle over the deformation to the normal cone $\text{DNC}(V,M)$ through a rescaling of a vector bundle $E\to V$, which generalizes the construction of the spinor rescaled bundle over the tangent groupoid by Nigel Higson and Zelin Yi. We also provide an equivariant version of their construction. As the main application, we recover the Kirillov character formula for the equivariant index of Dirac-type operators. As another application, we get an equivariant generalization of the description of the Witten and the Novikov deformations of the de Rham-Dirac operator using the deformation to the normal cone obtained recently by O. Mohsen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源