论文标题

动态图中的基于平行订单的核心维护

Parallel Order-Based Core Maintenance in Dynamic Graphs

论文作者

Guo, Bin, Sekerinski, Emil

论文摘要

图中顶点的核心数是由于线性运行时间而是最深入的内聚子图模型之一。实际上,许多数据图是动态图,通过插入或删除边缘通过不断更改。核心数在带有边缘插入和删除的动态图中更新,这称为核心维护。当大量插入或删除的边缘出现时,我们必须按时处理这些边缘以跟上数据流。有两个主要的顺序算法用于核心维护,\ textsc {traversal}和\ textsc {order}。事实证明,\ textsc {order}算法在所有测试的图表上,\ alg {traversal}算法的表现明显优于\ alg {traversal}算法,其速度最高为2,083次。 据我们所知,所有现有的平行方法均基于\ alg {traversal}算法;同样,它们的并行性仅适用于具有不同核心数的受影响的顶点,当所有顶点都具有相同的核心数时,它们将减小为顺序。在本文中,我们根据\ alg {order}算法提出了一种新的并行核心维护算法。重要的是,我们的新方法始终具有并行性,即使对于所有顶点都具有相同核心数的图形。广泛的实验是通过64核机上的现实世界,时间和合成图进行的。结果表明,与最有效的现有方法相比,我们的方法用于使用16工厂插入和删除100,000个边缘,我们的方法可达到289倍和10倍的速度。

The core numbers of vertices in a graph are one of the most well-studied cohesive subgraph models because of the linear running time. In practice, many data graphs are dynamic graphs that are continuously changing by inserting or removing edges. The core numbers are updated in dynamic graphs with edge insertions and deletions, which is called core maintenance. When a burst of a large number of inserted or removed edges come in, we have to handle these edges on time to keep up with the data stream. There are two main sequential algorithms for core maintenance, \textsc{Traversal} and \textsc{Order}. It is proved that the \textsc{Order} algorithm significantly outperforms the \alg{Traversal} algorithm over all tested graphs with up to 2,083 times speedups. To the best of our knowledge, all existing parallel approaches are based on the \alg{Traversal} algorithm; also, their parallelism exists only for affected vertices with different core numbers, which will reduce to sequential when all vertices have the same core numbers. In this paper, we propose a new parallel core maintenance algorithm based on the \alg{Order} algorithm. Importantly, our new approach always has parallelism, even for the graphs where all vertices have the same core numbers. Extensive experiments are conducted over real-world, temporal, and synthetic graphs on a 64-core machine. The results show that for inserting and removing 100,000 edges using 16-worker, our method achieves up to 289x and 10x times speedups compared with the most efficient existing method, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源