论文标题
量子大厅和谐波振荡器系统在非交通飞机上的动态和静态特性
Dynamic and static properties of Quantum Hall and Harmonic Oscillator systems on the non-commutative plane
论文作者
论文摘要
我们使用代表独立的方法在非交通平面上研究了两个量子机械系统。首先,在Landau问题的背景下,我们获得了将Landau和非交换空间中的对称量规连接的量规变换的明确表达。这使我们得出结论,对称规格的通常形式$ \ vec {a} = \ left( - \fracβ{2} \ hat {y},\fracβ{2} \ hat {x}} \ hat {x} \ right)$,其中常数$β$被解释为磁性领域,不正确,不正确。我们还能够确定$β$作为磁场的函数的精确定义,在非共同平面中,对称和Landau仪表之间的等价之间存在。使用对称仪表,我们获得了量子霍尔系统光谱的结果,其在电场和其他静态可观察物的存在下的横向电导率。这些结果修改了关于非交通平面中量子霍尔效应的文献,其中假定对称规格的不正确形式在非共同空间中。我们还研究了该系统的简单可观察物的非平衡动力学。另一方面,我们研究了非共同空间中谐波振荡器的动力学,并表明,总的来说,它表现出与其交换版本形成鲜明对比的准周期行为。对动态的研究表明了自己是表征和理解非交流性影响的最强大工具。
We study two quantum mechanical systems on the noncommutative plane using a representation independent approach. First, in the context of the Landau problem, we obtain an explicit expression for the gauge transformation that connects the Landau and the symmetric gauge in noncommutative space. This lead us to conclude that the usual form of the symmetric gauge $\vec{A}=\left(-\fracβ{2}\hat{Y},\fracβ{2}\hat{X}\right)$, in which the constant $β$ is interpreted as the magnetic field, is not true in noncommutative space. We also be able to establish a precise definition of $β$ as function of the magnetic field, for which the equivalence between the symmetric and Landau gauges is hold in noncommutative plane. Using the symmetric gauge we obtain results for the spectrum of the Quantum Hall system, its transverse conductivity in the presence of an electric field and other static observables. These results amend the literature on Quantum Hall Effect in noncommutative plane in which the incorrect form of the symmetric gauge, in noncommutative space, is assumed. We also study the non-equilibrium dynamics of simple observables for this system. On the other hand, we study the dynamics of the harmonic oscillator in non-commutative space and show that, in general, it exhibit quasi-periodic behavior, in striking contrast with its commutative version. The study of the dynamics reveals itself as a most powerful tool to characterize and understand the effects of non-commutativity.