论文标题

线的一致性奇异表面

Line Congruences on singular surfaces

论文作者

Lopes, Débora, Tejeda, Tito Alexandro Medina, Ruas, Maria Aparecida Soares, Santos, Igor Chagas

论文摘要

本文是将Kummer的理论扩展到case $ \ lbrace x,ξ\ rbrace $的第一步,其中$ x:u \ rightarrow \ mathbb {r}^3 $是平滑的地图和$ξ:u \ rightarrow \ rightArrow \ rightArrow \ rightArrow \ m athbb {r}^3 $是适当的frontal。我们表明,如果$ \ lbrace x,ξ\ rbrace $是正常的一致性,则主表面的方程是可开发表面方程的倍数,此外,乘法因子与$ξ$的单数集有关。

This paper is a first step in order to extend Kummer's theory for line congruences to the case $\lbrace x, ξ\rbrace $, where $x: U \rightarrow \mathbb{R}^3$ is a smooth map and $ξ: U \rightarrow \mathbb{R}^3$ is a proper frontal. We show that if $\lbrace x, ξ\rbrace$ is a normal congruence, the equation of the principal surfaces is a multiple of the equation of the developable surfaces, furthermore, the multiplicative factor is associated to the singular set of $ξ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源