论文标题

通过自动扫描探针显微镜在混合钙晶的单个晶界处拆卸电子传输和滞后

Disentangling electronic transport and hysteresis at individual grain boundaries in hybrid perovskites via automated scanning probe microscopy

论文作者

Liu, Yongtao, Yang, Jonghee, Lawrie, Benjamin J., Kelley, Kyle P., Ziatdinov, Maxim, Kalinin, Sergei V., Ahmadi, Mahshid

论文摘要

在理解多晶MHP薄膜的微观结构方面,金属卤化物钙钛矿(MHP)的光伏效率和稳定性的迅速增加的基础。在过去的十年中,激烈的努力旨在了解微观结构对MHP特性的影响,包括化学异质性,应变障碍,相杂质等。已经发现,谷物和晶界(GB)与MHP薄膜中的许多显微镜和纳米级行为密切相关。原子力显微镜(AFM)被广泛用于观察地形中的晶粒和边界结构,然后研究这些结构的相关表面潜力和电导率。目前,大多数AFM测量已在成像模式下进行,以研究静态行为,相反,AFM光谱模式使我们能够研究材料的动态行为,例如电压下的电导率。但是,AFM光谱测量值的主要局限性是,它要求人类操作员手动操作,因此只能获得有限的数据,从而阻碍对这些微观结构的系统研究。在这项工作中,我们设计了一个工作流,将导电AFM测量与机器学习(ML)算法相结合,以系统地研究MHP中的晶界。受过训练的ML模型可以从地形图像中提取GBS位置,工作流程将AFM探针驱动到每个GB位置,以自动执行电流电压(IV)曲线。然后,我们能够在所有GB位置弯曲IV曲线,从而使我们能够系统地了解GB的属性。使用这种方法,我们发现GB插口点更具光感,而大多数以前的作品仅着眼于GB和Grains之间的差异。

Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advance in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have aimed to understand the effect of microstructure on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin film. Atomic force microscopy (AFM) is widely used to observe grain and boundary structures in topography and subsequently to study the correlative surface potential and conductivity of these structures. For now, most AFM measurements have been performed in imaging mode to study the static behavior, in contrast, AFM spectroscopy mode allows us to investigate the dynamic behavior of materials, e.g. conductivity under sweeping voltage. However, a major limitation of AFM spectroscopy measurements is that it requests manual operation by human operators, as such only limited data can be obtained, hindering systematic investigations of these microstructures. In this work, we designed a workflow combining the conductive AFM measurement with a machine learning (ML) algorithm to systematically investigate grain boundaries in MHPs. The trained ML model can extract GBs locations from the topography image, and the workflow drives the AFM probe to each GB location to perform a current-voltage (IV) curve automatically. Then, we are able to IV curves at all GB locations, allowing us to systematically understand the property of GBs. Using this method, we discover that the GB junction points are more photoactive, while most previous works only focused on the difference between GB and grains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源