论文标题

一个自适应的多保真抽样框架,用于连接和自动化车辆的安全分析

An adaptive multi-fidelity sampling framework for safety analysis of connected and automated vehicles

论文作者

Gong, Xianliang, Feng, Shuo, Pan, Yulin

论文摘要

测试和评估是连接和自动化车辆(CAVS)开发的昂贵但至关重要的步骤。在本文中,我们开发了一个自适应采样框架来有效评估CAV的事故率,尤其是对于基于场景的测试,从自然主义驱动数据中知道输入参数的概率分布。我们的框架依靠替代模型来近似CAV性能和新颖的采集功能,以最大程度地提高通过信息理论考虑提出的下一个样本的收益(事故率)。除了仅具有单个高保真性能的CAV性能模型的标准应用外,我们还将方法扩展到了Bi-Fidelity上下文,在该环境中,可以以较低的计算成本使用额外的低保真模型来近似CAV性能。因此,对于第二种情况,我们的方法是制定的,以便它可以根据保真度级别(即要使用哪种模型)和采样位置选择下一个样本,以最大程度地提高每个成本的收益。我们的框架在骑士的广泛考虑的二维切割问题中进行了测试,其中使用具有不同时间分辨率的智能驾驶模型(IDM)来构建高保真模型。我们表明,我们的单曲方法的表现优于相同问题的现有方法,而Bifidelity方法可以进一步节省一半的计算成本,以达到估计事故率的相似精度。

Testing and evaluation are expensive but critical steps in the development of connected and automated vehicles (CAVs). In this paper, we develop an adaptive sampling framework to efficiently evaluate the accident rate of CAVs, particularly for scenario-based tests where the probability distribution of input parameters is known from the Naturalistic Driving Data. Our framework relies on a surrogate model to approximate the CAV performance and a novel acquisition function to maximize the benefit (information to accident rate) of the next sample formulated through an information-theoretic consideration. In addition to the standard application with only a single high-fidelity model of CAV performance, we also extend our approach to the bi-fidelity context where an additional low-fidelity model can be used at a lower computational cost to approximate the CAV performance. Accordingly, for the second case, our approach is formulated such that it allows the choice of the next sample in terms of both fidelity level (i.e., which model to use) and sampling location to maximize the benefit per cost. Our framework is tested in a widely-considered two-dimensional cut-in problem for CAVs, where Intelligent Driving Model (IDM) with different time resolutions are used to construct the high and low-fidelity models. We show that our single-fidelity method outperforms the existing approach for the same problem, and the bi-fidelity method can further save half of the computational cost to reach a similar accuracy in estimating the accident rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源