论文标题
乘数和单生三叠纪代数
Multipliers and Unicentral Triassociative Algebras
论文作者
论文摘要
我们介绍了在关联试验或三叠纪代数的背景下的著名Schur乘数的类似物。后者于2001年首次由Loday和Ronco研究,其特征是三个操作和11个关系。该论文突出了乘数,覆盖物和单周三叠纪代数的扩展理论十字路口。使用以前的代数环境中的理论作为指导,我们制定了盖子中心地图到代数中心的标准。一路上,我们获得了封面的唯一性,乘数的两个不同特征以及几个精确的辅助序列。
We introduce an analogue of the famous Schur multiplier in the context of associative trialgebras, or triassociative algebras. The latter were first studied by Loday and Ronco in 2001, and are characterized by three operations and eleven relations. The paper highlights an extension-theoretic crossroads of multipliers, covers, and unicentral triassociative algebras. Using theory from previous algebraic contexts as a guide, we develop criteria for when the center of the cover maps onto the center of the algebra. Along the way, we obtain the uniqueness of the cover, two different characterizations of the multiplier, and several exact cohomological sequences.