论文标题
besov空间的点乘数$ b^{0,b} _ {p,\ infty}(\ mathbb {r}^n)$仅具有对数平滑度
Pointwise Multipliers for Besov Spaces $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ with Only Logarithmic Smoothness
论文作者
论文摘要
在本文中,我们建立了集合$ m(b^{0,b} _ {p,\ infty}(\ mathbb {r}^n))$ besov spaces $ b^{0,b} _ {在特殊情况下,$ b \ in \ mathbb {r} $ $ p = 1 $和$ p = \ infty $。作为这两个特征的应用,我们澄清了是否三个具体示例,即开放集的特征功能,连续函数由差异定义,以及$ e^{ik \ cdot x} $,带有$ k \ in \ in \ mathbb {z}^n $ in \ in \ in \ mathbb in \ n. $ b^{0,b} _ {1,\ infty}(\ mathbb {r}^n)$和$ b^{0,b} _ {\ infty,\ infty,\ infty}(\ mathbb {r}^n)$;此外,我们获得了$ \ | e^{ik \ cdot x} \ | _ {m(b^{0,b} _ {1,\ infty}(\ mathbb {r}^n)} $和$ \ | e^cdot \ cd { x} \ | _ {m(b^{0,b} _ {\ infty,\ infty}(\ mathbb {r}^n))} $。如果$ p \ in(1,\ infty)$,我们给出了$ b^{0,b} _ {p,\ iffty}(\ mathbb {r}^n)$的乘数和一些必需条件$ m(b^{0,b} _ {p,\ infty}(\ mathbb {r}^n))$仍然打开。但是,通过一种不同的方法,我们仍然能够准确计算$ \ | e^{ik \ cdot x} \ | _ {m(b^{0,b} _ {p,\ infty}(\ m mathbb {r}^n)} $,$ k \ in \ mathbb {本文的新颖性是大多数证据都是建设性的,这些结构在很大程度上取决于正在考虑的BESOV空间的对数结构。
In this article, we establish a characterization of the set $M(B^{0,b}_{p,\infty}(\mathbb{R}^n))$ of all pointwise multipliers of Besov spaces $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ with only logarithmic smoothness $b\in\mathbb{R}$ in the special cases $p=1$ and $p=\infty$. As applications of these two characterizations, we clarify whether or not the three concrete examples, namely characteristic functions of open sets, continuous functions defined by differences, and the functions $e^{ik\cdot x}$ with $k\in\mathbb{Z}^n$ and $x\in\mathbb{R}^n$, are pointwise multipliers of $B^{0,b}_{1,\infty}(\mathbb{R}^n)$ and $B^{0,b}_{\infty,\infty}(\mathbb{R}^n)$, respectively; furthermore, we obtain the explicit estimates of $\|e^{ik \cdot x}\|_{M(B^{0,b}_{1,\infty}(\mathbb{R}^n))}$ and $\|e^{ik \cdot x}\|_{M(B^{0,b}_{\infty,\infty}(\mathbb{R}^n))}$. In the case that $p\in(1,\infty)$, we give some sufficient conditions and some necessary conditions of the pointwise multipliers of $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ and a complete characterization of $M(B^{0,b}_{p,\infty}(\mathbb{R}^n))$ is still open. However, via a different method, we are still able to accurately calculate $\|e^{ik \cdot x}\|_{M(B^{0,b}_{p,\infty}(\mathbb{R}^n))}$, $k\in\mathbb{Z}^n$, in this situation. The novelty of this article is that most of the proofs are constructive and these constructions strongly depend on the logarithmic structure of Besov spaces under consideration.