论文标题

besov空间的点乘数$ b^{0,b} _ {p,\ infty}(\ mathbb {r}^n)$仅具有对数平滑度

Pointwise Multipliers for Besov Spaces $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ with Only Logarithmic Smoothness

论文作者

Li, Ziwei, Sickel, Winfried, Yang, Dachun, Yuan, Wen

论文摘要

在本文中,我们建立了集合$ m(b^{0,b} _ {p,\ infty}(\ mathbb {r}^n))$ besov spaces $ b^{0,b} _ {在特殊情况下,$ b \ in \ mathbb {r} $ $ p = 1 $和$ p = \ infty $。作为这两个特征的应用,我们澄清了是否三个具体示例,即开放集的特征功能,连续函数由差异定义,以及$ e^{ik \ cdot x} $,带有$ k \ in \ in \ mathbb {z}^n $ in \ in \ in \ mathbb in \ n. $ b^{0,b} _ {1,\ infty}(\ mathbb {r}^n)$和$ b^{0,b} _ {\ infty,\ infty,\ infty}(\ mathbb {r}^n)$;此外,我们获得了$ \ | e^{ik \ cdot x} \ | _ {m(b^{0,b} _ {1,\ infty}(\ mathbb {r}^n)} $和$ \ | e^cdot \ cd { x} \ | _ {m(b^{0,b} _ {\ infty,\ infty}(\ mathbb {r}^n))} $。如果$ p \ in(1,\ infty)$,我们给出了$ b^{0,b} _ {p,\ iffty}(\ mathbb {r}^n)$的乘数和一些必需条件$ m(b^{0,b} _ {p,\ infty}(\ mathbb {r}^n))$仍然打开。但是,通过一种不同的方法,我们仍然能够准确计算$ \ | e^{ik \ cdot x} \ | _ {m(b^{0,b} _ {p,\ infty}(\ m mathbb {r}^n)} $,$ k \ in \ mathbb {本文的新颖性是大多数证据都是建设性的,这些结构在很大程度上取决于正在考虑的BESOV空间的对数结构。

In this article, we establish a characterization of the set $M(B^{0,b}_{p,\infty}(\mathbb{R}^n))$ of all pointwise multipliers of Besov spaces $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ with only logarithmic smoothness $b\in\mathbb{R}$ in the special cases $p=1$ and $p=\infty$. As applications of these two characterizations, we clarify whether or not the three concrete examples, namely characteristic functions of open sets, continuous functions defined by differences, and the functions $e^{ik\cdot x}$ with $k\in\mathbb{Z}^n$ and $x\in\mathbb{R}^n$, are pointwise multipliers of $B^{0,b}_{1,\infty}(\mathbb{R}^n)$ and $B^{0,b}_{\infty,\infty}(\mathbb{R}^n)$, respectively; furthermore, we obtain the explicit estimates of $\|e^{ik \cdot x}\|_{M(B^{0,b}_{1,\infty}(\mathbb{R}^n))}$ and $\|e^{ik \cdot x}\|_{M(B^{0,b}_{\infty,\infty}(\mathbb{R}^n))}$. In the case that $p\in(1,\infty)$, we give some sufficient conditions and some necessary conditions of the pointwise multipliers of $B^{0,b}_{p,\infty}(\mathbb{R}^n)$ and a complete characterization of $M(B^{0,b}_{p,\infty}(\mathbb{R}^n))$ is still open. However, via a different method, we are still able to accurately calculate $\|e^{ik \cdot x}\|_{M(B^{0,b}_{p,\infty}(\mathbb{R}^n))}$, $k\in\mathbb{Z}^n$, in this situation. The novelty of this article is that most of the proofs are constructive and these constructions strongly depend on the logarithmic structure of Besov spaces under consideration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源