论文标题
Hiddengems:通过主动学习有效的安全边界检测
HiddenGems: Efficient safety boundary detection with active learning
论文作者
论文摘要
以资源有效的方式评估安全性能对于自治系统的发展至关重要。参数化场景的模拟是一种流行的测试策略,但参数扫描可能非常昂贵。为了解决这个问题,我们提出了Hiddengems:一种通过主动学习发现符合性和不合规行为之间边界的样本效率方法。给定参数化的方案,一个或多个合规性指标和模拟甲骨文,Hiddengems映射了该方案的合规性和不合格的域。该方法可实现关键的测试案例识别,对正在测试的系统的不同版本的比较分析以及设计目标的验证。我们在一个自动驾驶汽车前的Jaywalker交叉处评估了Hiddengems,并获得了碰撞,车道保存和加速度指标的合规性边界估计值,而模拟的模拟比参数扫描少6倍。我们还展示了如何使用Hiddengem来检测和纠正未受保护的转弯的故障模式,而模拟少了86%。
Evaluating safety performance in a resource-efficient way is crucial for the development of autonomous systems. Simulation of parameterized scenarios is a popular testing strategy but parameter sweeps can be prohibitively expensive. To address this, we propose HiddenGems: a sample-efficient method for discovering the boundary between compliant and non-compliant behavior via active learning. Given a parameterized scenario, one or more compliance metrics, and a simulation oracle, HiddenGems maps the compliant and non-compliant domains of the scenario. The methodology enables critical test case identification, comparative analysis of different versions of the system under test, as well as verification of design objectives. We evaluate HiddenGems on a scenario with a jaywalker crossing in front of an autonomous vehicle and obtain compliance boundary estimates for collision, lane keep, and acceleration metrics individually and in combination, with 6 times fewer simulations than a parameter sweep. We also show how HiddenGems can be used to detect and rectify a failure mode for an unprotected turn with 86% fewer simulations.