论文标题

从X射线光谱中迈向结构重建

Towards Structural Reconstruction from X-Ray Spectra

论文作者

Vladyka, Anton, Sahle, Christoph J., Niskanen, Johannes

论文摘要

我们报告了对高架压力下的无定形Geo $ _2 $模拟的GE K边缘X射线发射光谱的统计分析。我们发现,采用机器学习方法我们可以可靠地预测k $β'$和k $β_2$的统计矩,并从库仑矩阵描述符中使用$ \ sim 10^4 $样本的培训集中的频谱中的峰值。光谱引导的降低降低技术使我们能够构建从光谱矩到伪库仑矩阵的近相位映射。将其应用于集合均值光谱的矩时,我们从与集合平均值紧密匹配的活动位点获得距离,并重现压力诱导的无定形GEO $ _2 $的配位变化。通过采用基于模拟器的组件分析的方法,我们能够滤除从模拟快照中获得的人为完整的结构信息,并定量分析从K $β$发射光谱的变化中可以推断出的结构变化。

We report a statistical analysis of Ge K-edge X-ray emission spectra simulated for amorphous GeO$_2$ at elevated pressures. We find that employing machine learning approaches we can reliably predict the statistical moments of the K$β''$ and K$β_2$ peaks in the spectrum from the Coulomb matrix descriptor with a training set of $\sim 10^4$ samples. Spectral-significance-guided dimensionality reduction techniques allow us to construct an approximate inverse mapping from spectral moments to pseudo-Coulomb matrices. When applying this to the moments of the ensemble-mean spectrum, we obtain distances from the active site that match closely to those of the ensemble mean and which moreover reproduce the pressure-induced coordination change in amorphous GeO$_2$. With this approach utilizing emulator-based component analysis, we are able to filter out the artificially complete structural information available from simulated snapshots, and quantitatively analyse structural changes that can be inferred from the changes in the K$β$ emission spectrum alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源