论文标题

浅神经网络中的近端平均野外学习

Proximal Mean Field Learning in Shallow Neural Networks

论文作者

Teter, Alexis, Nodozi, Iman, Halder, Abhishek

论文摘要

我们为浅层过度参数化的神经网络(即具有无限宽度的单个隐藏层的网络提出了一种自定义学习算法。隐藏层的无限宽度是过度参数化的抽象。在浅层神经网络中学习动态的最新平均现场解释的基础上,我们将平均现场学习视为计算算法,而不是作为一种分析工具。具体而言,我们设计了一种sndhorn正则化近端算法,以近似加权点云上学习动力学的分布流。在这种情况下,收缩固定点递归计算时间变化的权重,从数值上意识到了在神经元集合上支持的参数分布的相互作用的wasserstein梯度流。提出的算法的一个吸引人的方面是,测量值递归允许无网状计算。我们证明了在二进制和多类分类上相互作用加权粒子演变的建议计算框架。我们的算法执行与风险功能相关的自由能的梯度下降。

We propose a custom learning algorithm for shallow over-parameterized neural networks, i.e., networks with single hidden layer having infinite width. The infinite width of the hidden layer serves as an abstraction for the over-parameterization. Building on the recent mean field interpretations of learning dynamics in shallow neural networks, we realize mean field learning as a computational algorithm, rather than as an analytical tool. Specifically, we design a Sinkhorn regularized proximal algorithm to approximate the distributional flow for the learning dynamics over weighted point clouds. In this setting, a contractive fixed point recursion computes the time-varying weights, numerically realizing the interacting Wasserstein gradient flow of the parameter distribution supported over the neuronal ensemble. An appealing aspect of the proposed algorithm is that the measure-valued recursions allow meshless computation. We demonstrate the proposed computational framework of interacting weighted particle evolution on binary and multi-class classification. Our algorithm performs gradient descent of the free energy associated with the risk functional.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源