论文标题

关于2还原的Schur功能和Schur的Q-功能的猜想

On a conjecture on 2-reduced Schur functions and Schur's Q-functions

论文作者

Nishiyama, Yuta

论文摘要

由Sato和Mori在Korteweg-de Vries(KDV)方程以及修改后的KDV方程,Mizukawa,Nakajima和Yamada的工作的动机中提出了猜想,并对2降低的Schur功能和Schur的Q-Finctions提出了猜测。猜想声称,Littlewood-Richardson系数的某些产品和两个2还原的Schur功能等于Schur的Q-功能,直至标量倍数。在本文中,我们给出了尚未证明的猜想的证明。我们介绍了Schur Q-功能的新表达,并使用它来证明猜想。还使用了逆Kostka矩阵的组合学。在通常的情况下,我们还考虑了猜想。

Motivated by Sato and Mori's work on the Korteweg-de Vries (KdV) equation and the modified KdV equation, Mizukawa, Nakajima, and Yamada made a conjecture on 2-reduced Schur functions and Schur's Q-functions. The conjecture claims that certain sums of products of a Littlewood-Richardson coefficient and two 2-reduced Schur functions are equal to Schur's Q-functions up to a scalar multiple. In this paper we give a proof of the conjecture in cases which have not been proved yet. We introduce a new expression of Schur's Q-functions and use it to prove the conjecture. Combinatorics of the inverse Kostka matrix is also used. We also provide consideration of the conjecture in general case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源