论文标题
优先学习的发射器,用于混合质量多样性算法
Preference-Learning Emitters for Mixed-Initiative Quality-Diversity Algorithms
论文作者
论文摘要
在混合宣传的共同创造任务中,其中人和机器共同创建项目,向设计师提供多个相关建议很重要。质量多样性算法通常用于此目的,因为它们可以提供代表解决方案空间显着区域的各种建议,展示具有高健身和多样性的设计。由于生成的建议推动了搜索过程,因此重要的是要提供灵感,但也与设计师的意图保持一致。此外,在设计师对解决方案的满足之前,通常需要与系统进行许多交互。在这项工作中,我们通过交互式约束的地图精灵系统来应对这些挑战,该系统利用发射器学习设计师的偏好,然后以自动步骤使用它们。通过学习偏好,生成的设计仍然与设计师的意图保持一致,并且通过应用自动步骤,我们每次用户互动生成更多解决方案,为设计人员提供了更多选择,从而加快了搜索的速度。我们为偏好学习发射器(PLE)提出了一个通用框架,并将其应用于视频游戏太空工程师的程序性内容生成任务。我们为我们的算法构建了交互式应用程序,并与玩家一起进行了用户研究。
In mixed-initiative co-creation tasks, wherein a human and a machine jointly create items, it is important to provide multiple relevant suggestions to the designer. Quality-diversity algorithms are commonly used for this purpose, as they can provide diverse suggestions that represent salient areas of the solution space, showcasing designs with high fitness and wide variety. Because generated suggestions drive the search process, it is important that they provide inspiration, but also stay aligned with the designer's intentions. Additionally, often many interactions with the system are required before the designer is content with a solution. In this work, we tackle these challenges with an interactive constrained MAP-Elites system that leverages emitters to learn the preferences of the designer and then use them in automated steps. By learning preferences, the generated designs remain aligned with the designer's intent, and by applying automatic steps, we generate more solutions per user interaction, giving a larger number of choices to the designer and thereby speeding up the search. We propose a general framework for preference-learning emitters (PLEs) and apply it to a procedural content generation task in the video game Space Engineers. We built an interactive application for our algorithm and performed a user study with players.