论文标题
Scholz猜想加法链上的猜想是无限的许多整数,$ \ ell(2n)= \ ell(n)$
The Scholz conjecture on addition chain is true for infinitely many integers with $\ell(2n)= \ell(n)$
论文作者
论文摘要
众所周知,对于所有整数$ n $,带有$ \ ell(2n)= \ ell(n)+1 $的所有整数$ n $都是如此。存在$ \ ell(2n)\ leq \ ell(n)$的无限整数,我们不知道猜想是否仍然适合它们。该猜想还被证明可以为整数$ n $提供,其中$ v(n)\ leq 5 $,对于无限的许多整数($ v(n)= 6 $)。 $ v(n)= 7 $的整数没有具体的结果。在\ cite {thurber}中,给出了满足$ \ ell(n)= \ ell(2n)$和$ v(n)= 7 $的无限整数列表。在本文中,我们证明了猜想对所有人都有。
It is known that the Scholz conjecture on addition chains is true for all integers $n$ with $\ell(2n) = \ell(n)+1$. There exists infinitely many integers with $\ell(2n) \leq \ell(n)$ and we don't know if the conjecture still holds for them. The conjecture is also proven to hold for integers $n$ with $v(n) \leq 5$ and for infinitely many integers with $v(n)=6$. There is no specific results on integers with $v(n)=7$. In \cite{thurber}, an infinite list of integers satisfying $\ell(n) = \ell(2n)$ and $v(n) = 7$ is given. In this paper, we prove that the conjecture holds for all of them.