论文标题

一般扰动定理,应用于非均匀临界生长椭圆形问题

A general perturbation theorem with applications to nonhomogeneous critical growth elliptic problems

论文作者

Perera, Kanishka

论文摘要

我们证明了一种一般的扰动定理,可用于获得各种局部和非局部非均质椭圆问题的非平凡溶液对。对关键$ p $ -laplacian问题的申请,$ p $ -laplacian问题,具有关键的Hardy-Sobolev指数,关键的分数$ p $ -laplacian问题和关键$(P,Q)$ - Laplacian问题。即使在半线性案例$ p = 2 $中,我们的结果也是新的。

We prove a general perturbation theorem that can be used to obtain pairs of nontrivial solutions of a wide range of local and nonlocal nonhomogeneous elliptic problems. Applications to critical $p$-Laplacian problems, $p$-Laplacian problems with critical Hardy-Sobolev exponents, critical fractional $p$-Laplacian problems, and critical $(p,q)$-Laplacian problems are given. Our results are new even in the semilinear case $p = 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源