论文标题

ASD:针对先前无面部属性识别的属性空间分解

ASD: Towards Attribute Spatial Decomposition for Prior-Free Facial Attribute Recognition

论文作者

Hu, Chuanfei, Shao, Hang, Dong, Bo, Wang, Zhe, Wang, Yongxiong

论文摘要

代表面部属性的空间特性是面部属性识别(FAR)的重要挑战。最近的进步已经实现了远处的可靠表现,从而通过额外的先验信息从空间属性中受益。但是,额外的先前信息可能不会始终可用,从而导致了基于先前的方法的限制应用程序方案。同时,忽略了由面部零件的固有空间多样性引起的面部属性的空间歧义。为了解决这些问题,我们提出了一种先前的属性空间分解方法(ASD),从而减轻了面部属性的空间歧义,而没有任何额外的先前信息。具体而言,提出了分配 - 安装模块(AEM)以启用ASD的过程,ASD的过程包括两个操作:属性到位置分配和位置到位置嵌入。属性到位置分配首先根据潜在因素分解特征图,并在每个空间位置分配属性组件的幅度。然后,来自所有位置的分配属性组件以表示全局级属性嵌入。此外,引入相关矩阵最小化(CMM)以扩大属性嵌入的可区分性。实验结果证明了与基于先前的先验方法相比,ASD的优势是,而对于有限的培训数据,ASD的可靠绩效得到了进一步验证。

Representing the spatial properties of facial attributes is a vital challenge for facial attribute recognition (FAR). Recent advances have achieved the reliable performances for FAR, benefiting from the description of spatial properties via extra prior information. However, the extra prior information might not be always available, resulting in the restricted application scenario of the prior-based methods. Meanwhile, the spatial ambiguity of facial attributes caused by inherent spatial diversities of facial parts is ignored. To address these issues, we propose a prior-free method for attribute spatial decomposition (ASD), mitigating the spatial ambiguity of facial attributes without any extra prior information. Specifically, assignment-embedding module (AEM) is proposed to enable the procedure of ASD, which consists of two operations: attribute-to-location assignment and location-to-attribute embedding. The attribute-to-location assignment first decomposes the feature map based on latent factors, assigning the magnitude of attribute components on each spatial location. Then, the assigned attribute components from all locations to represent the global-level attribute embeddings. Furthermore, correlation matrix minimization (CMM) is introduced to enlarge the discriminability of attribute embeddings. Experimental results demonstrate the superiority of ASD compared with state-of-the-art prior-based methods, while the reliable performance of ASD for the case of limited training data is further validated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源