论文标题
图案 - 背门:通过主题重新考虑对图神经网络的后门攻击
Motif-Backdoor: Rethinking the Backdoor Attack on Graph Neural Networks via Motifs
论文作者
论文摘要
具有强大表示能力的图形神经网络(GNN)已广泛应用于各个领域,例如生物基因预测,社交建议等。最近的作品暴露了GNN容易受到后门攻击的影响,即接受训练有素的训练训练样品的模型很容易被贴布样品愚弄。大多数拟议的研究都使用触发器发射后门攻击,该触发是随机生成的子图(例如Erdős-rényi后门),以减少计算负担,或者是基于梯度的生成子图(例如图形Trojaning攻击),以实现更有效的攻击。但是,在当前文献中忽略了对触发结构的解释和后门攻击相关的效果。图图中的复发性和统计学上显着的子图中包含丰富的结构信息。在本文中,我们从主题的角度重新考虑了触发因素,并提出了一种基于图案的后门攻击,称为Motif-backdoor。它从三个方面做出了贡献。 (i)解释:它通过图案的触发结构的有效性为后门有效性提供了深入的解释,从而导致了一些新颖的见解,例如,使用触发器可以实现更好的攻击性能,在图中看起来较少的子图表。 (ii)有效性:在黑盒和防御性场景中,Motif-Backdoor都达到了最先进的攻击性能。 (iii)效率:基于图基主题分布,基序 - 背部门可以快速获得有效的触发结构,而无需目标模型反馈或子图模型生成。广泛的实验结果表明,与五个基线相比,Motif-Backdoor在三个流行型号和四个公共数据集上实现了SOTA性能。
Graph neural network (GNN) with a powerful representation capability has been widely applied to various areas, such as biological gene prediction, social recommendation, etc. Recent works have exposed that GNN is vulnerable to the backdoor attack, i.e., models trained with maliciously crafted training samples are easily fooled by patched samples. Most of the proposed studies launch the backdoor attack using a trigger that either is the randomly generated subgraph (e.g., erdős-rényi backdoor) for less computational burden, or the gradient-based generative subgraph (e.g., graph trojaning attack) to enable a more effective attack. However, the interpretation of how is the trigger structure and the effect of the backdoor attack related has been overlooked in the current literature. Motifs, recurrent and statistically significant sub-graphs in graphs, contain rich structure information. In this paper, we are rethinking the trigger from the perspective of motifs, and propose a motif-based backdoor attack, denoted as Motif-Backdoor. It contributes from three aspects. (i) Interpretation: it provides an in-depth explanation for backdoor effectiveness by the validity of the trigger structure from motifs, leading to some novel insights, e.g., using subgraphs that appear less frequently in the graph as the trigger can achieve better attack performance. (ii) Effectiveness: Motif-Backdoor reaches the state-of-the-art (SOTA) attack performance in both black-box and defensive scenarios. (iii) Efficiency: based on the graph motif distribution, Motif-Backdoor can quickly obtain an effective trigger structure without target model feedback or subgraph model generation. Extensive experimental results show that Motif-Backdoor realizes the SOTA performance on three popular models and four public datasets compared with five baselines.