论文标题
基于模型的基于触觉的驾驶员帮助系统中驾驶员控制工作负载的评估
Model-based Evaluation of Driver Control Workloads in Haptic-based Driver Assistance Systems
论文作者
论文摘要
这项研究提出了一种新颖的方法,用于建模和模拟人车相互作用,以检查自动驾驶系统(AD)对驾驶性能和驾驶员控制工作量的影响。现有的驱动程序交互研究依赖于模拟或现实世界中的人类驱动程序实验,这些实验在提供对驱动程序的动态相互作用和控制工作负载方面的客观评估。我们的方法利用基于人类模型的集成的主动驾驶系统(HUMADS)模拟车辆超车任务期间驾驶员模型与基于触觉的广告之间的动态相互作用。开发了两个驾驶员手臂驱动模型,既适用于时态和放松的人类驾驶员条件,并根据实验数据进行了验证。我们进行了一项仿真研究,以评估三种不同的触觉共享控制条件(基于控制冲突的存在和类型)对超车任务绩效和驾驶员工作负载的影响。我们发现,没有冲突共享控制方案会改善驾驶性能和减少控制工作负载,而冲突方案导致不安全的操纵和增加的工作量。这些与实验研究一致的发现表明了我们改善未来ADS设计的方法的潜力,以改善更安全的驾驶员辅助系统。
This study presents a novel approach for modeling and simulating human-vehicle interactions in order to examine the effects of automated driving systems (ADS) on driving performance and driver control workload. Existing driver-ADS interaction studies have relied on simulated or real-world human driver experiments that are limited in providing objective evaluation of the dynamic interactions and control workloads on the driver. Our approach leverages an integrated human model-based active driving system (HuMADS) to simulate the dynamic interaction between the driver model and the haptic-based ADS during a vehicle overtaking task. Two driver arm-steering models were developed for both tense and relaxed human driver conditions and validated against experimental data. We conducted a simulation study to evaluate the effects of three different haptic shared control conditions (based on the presence and type of control conflict) on overtaking task performance and driver workloads. We found that No Conflict shared control scenarios result in improved driving performance and reduced control workloads, while Conflict scenarios result in unsafe maneuvers and increased workloads. These findings, which are consistent with experimental studies, demonstrate the potential for our approach to improving future ADS design for safer driver assistance systems.