论文标题

Datavoidant:一种用于解决社交媒体上政治数据空隙的AI系统

Datavoidant: An AI System for Addressing Political Data Voids on Social Media

论文作者

Flores-Saviaga, Claudia, Feng, Shangbin, Savage, Saiph

论文摘要

关于与代表性不足社区相关的政治主题的有限信息(数据空隙)促进了虚假信息的传播。在代表性不足的社区中打击虚假信息的独立记者报告说,感到不知所措,因为他们缺乏理解其监视信息并解决数据空隙的所需工具。在本文中,我们提出了一个系统,以识别和解决人为不足社区中的政治数据空隙。在接受访谈研究的手持下,表明独立新闻媒体有可能解决这些问题,我们设计了一个智能的协作系统,称为Datavoidant。 Datavoidant使用最先进的机器学习模型,并引入了一个新颖的设计空间,以向独立记者提供对数据空隙的集体理解,以促进生成内容以涵盖空白。我们对独立新闻媒体记者(n = 22)进行了用户界面评估。这些记者报告说,Datavoidant的功能使它们得以更快,同时可以轻松了解信息生态系统中正在发生的事情以解决数据空隙。他们还报告说,他们对自己创建的内容以及他们提出的涵盖空白的独特观点感到更加自信。最后,我们讨论了Datavoidant如何启用一个新的设计空间,其中个人可以协作以理解其信息生态系统并积极设计策略以防止虚假信息。

The limited information (data voids) on political topics relevant to underrepresented communities has facilitated the spread of disinformation. Independent journalists who combat disinformation in underrepresented communities have reported feeling overwhelmed because they lack the tools necessary to make sense of the information they monitor and address the data voids. In this paper, we present a system to identify and address political data voids within underrepresented communities. Armed with an interview study, indicating that the independent news media has the potential to address them, we designed an intelligent collaborative system, called Datavoidant. Datavoidant uses state-of-the-art machine learning models and introduces a novel design space to provide independent journalists with a collective understanding of data voids to facilitate generating content to cover the voids. We performed a user interface evaluation with independent news media journalists (N=22). These journalists reported that Datavoidant's features allowed them to more rapidly while easily having a sense of what was taking place in the information ecosystem to address the data voids. They also reported feeling more confident about the content they created and the unique perspectives they had proposed to cover the voids. We conclude by discussing how Datavoidant enables a new design space wherein individuals can collaborate to make sense of their information ecosystem and actively devise strategies to prevent disinformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源