论文标题

使用加强学习的P2P能源系统中的能源价格

Energy Pricing in P2P Energy Systems Using Reinforcement Learning

论文作者

Avila, Nicolas, Hardan, Shahad, Zhalieva, Elnura, Aloqaily, Moayad, Guizani, Mohsen

论文摘要

消费者端可再生能源的增加为能源网格中的新动态提供了位置。在能源提供商的允许下,微电网的参与者可以与同龄人(PEER-PEER)产生能源并与其进行交易。在这种情况下,分布式可再生能源生成器和能源消耗的随机性增加了定义公平价格买卖能源的复杂性。在这项研究中,我们介绍了一个强化学习框架,以通过培训代理来设定微电网中所有组件的利润的价格来帮助解决此问题,旨在促进在现实生活中实施P2P网格。微电网认为消费者,生产商,服务提供商和社区电池。 \ textit {pymgrid}数据集的实验结果显示了一种成功的微电网中所有组件价格优化的方法。提出的框架确保了灵活性,以说明这些组件的兴趣,以及微电网中消费者和制造商的比率。结果还研究了改变社区电池对系统利润的能力的影响。实现代码可用\ href {https://github.com/artifitialleap-mbzuai/rl-p2p-price-prediction} {there}。

The increase in renewable energy on the consumer side gives place to new dynamics in the energy grids. Participants in a microgrid can produce energy and trade it with their peers (peer-to-peer) with the permission of the energy provider. In such a scenario, the stochastic nature of distributed renewable energy generators and energy consumption increases the complexity of defining fair prices for buying and selling energy. In this study, we introduce a reinforcement learning framework to help solve this issue by training an agent to set the prices that maximize the profit of all components in the microgrid, aiming to facilitate the implementation of P2P grids in real-life scenarios. The microgrid considers consumers, prosumers, the service provider, and a community battery. Experimental results on the \textit{Pymgrid} dataset show a successful approach to price optimization for all components in the microgrid. The proposed framework ensures flexibility to account for the interest of these components, as well as the ratio of consumers and prosumers in the microgrid. The results also examine the effect of changing the capacity of the community battery on the profit of the system. The implementation code is available \href{https://github.com/Artifitialleap-MBZUAI/rl-p2p-price-prediction}{here}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源