论文标题
在杂弦中无限距离限制处的仿射代数
Affine Algebras at Infinite Distance Limits in the Heterotic String
论文作者
论文摘要
我们分析了$ t^d $上的杂种字符串压缩的模量空间的边界,特别强调了$ d = 2 $及其F理论二重奏。当我们接近与某个双重框架中(可能部分)分解限制相对应的所有无限距离限制时,我们计算OPE代数。当分解$ k $方向时,我们发现无限的州塔成为光线,增强了在$ t^{d-k} $ compactification在其$ k $ loop版本的Moduli空间中产生的代数,其中中央扩展由$ k $ k $ k $ kk kk kk载体给出。对于$ t^2 $压缩,我们重现了F理论二元组中出现的所有仿射代数,并明确显示所有塔楼,其中包括一些在F理论的同行中不显示的塔。此外,我们构建了Aggine $ SO(32)$代数,该代数在杂种和F理论方面都在完整的分解限制中产生,这表明,不仅在后者中出现了异常类型的代数。
We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on $T^d$, making particular emphasis on $d=2$ and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification limits in some dual frame. When decompactifying $k$ directions, we find infinite towers of states becoming light that enhance the algebra arising at a given point in the moduli space of the $T^{d-k}$ compactification to its $k$-loop version, where the central extensions are given by the $k$ KK vectors. For $T^2$ compactifications, we reproduce all the affine algebras that arise in the F-theory dual, and show all the towers explicitly, including some that are not manifest in the F-theory counterparts. Furthermore, we construct the affine $SO(32)$ algebra arising in the full decompactification limit, both in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional type arise in the latter.