论文标题
双像素雨滴去除
Dual-Pixel Raindrop Removal
论文作者
论文摘要
对于各种计算机视觉应用程序,删除图像中的雨滴是一项重要任务。在本文中,我们提出了使用双像素(DP)传感器更好地解决雨滴去除的第一种方法。我们的主要观察结果是,连接到玻璃窗上的雨滴在DP的左半图像和右图中产生明显的差异,而对于聚焦背景的雨滴几乎没有差异。因此,可以将DP差异用于可靠的雨滴检测。 DP差异还带来了一个优势,即雨滴的阻塞背景区域在左半图像和右图像之间移动。因此,从左半和右图像中融合信息会导致更准确的背景纹理恢复。基于上述动机,我们提出了一个由DP雨滴检测和DP融合雨滴清除组成的DP雨滴去除网络(DPRRN)。为了有效地生成大量的训练数据,我们还提出了一条新型的管道,以在现实世界背景DP图像中添加合成雨滴。关于合成和现实世界数据集的实验结果表明,我们的DPRN优于现有的最新方法,尤其是对现实世界中的鲁棒性更好。我们的源代码和数据集可在http://www.ok.sc.e.titech.ac.ac.jp/res/sir/上找到。
Removing raindrops in images has been addressed as a significant task for various computer vision applications. In this paper, we propose the first method using a Dual-Pixel (DP) sensor to better address the raindrop removal. Our key observation is that raindrops attached to a glass window yield noticeable disparities in DP's left-half and right-half images, while almost no disparity exists for in-focus backgrounds. Therefore, DP disparities can be utilized for robust raindrop detection. The DP disparities also brings the advantage that the occluded background regions by raindrops are shifted between the left-half and the right-half images. Therefore, fusing the information from the left-half and the right-half images can lead to more accurate background texture recovery. Based on the above motivation, we propose a DP Raindrop Removal Network (DPRRN) consisting of DP raindrop detection and DP fused raindrop removal. To efficiently generate a large amount of training data, we also propose a novel pipeline to add synthetic raindrops to real-world background DP images. Experimental results on synthetic and real-world datasets demonstrate that our DPRRN outperforms existing state-of-the-art methods, especially showing better robustness to real-world situations. Our source code and datasets are available at http://www.ok.sc.e.titech.ac.jp/res/SIR/.