论文标题

火星:元学习作为在功能空间中的得分匹配

MARS: Meta-Learning as Score Matching in the Function Space

论文作者

Pavasovic, Krunoslav Lehman, Rothfuss, Jonas, Krause, Andreas

论文摘要

元学习旨在从一组相关数据集中提取有用的归纳偏差。在贝叶斯元学习中,这通常是通过在神经网络参数上构造先前的分布来实现的。但是,在高维神经网络参数上指定计算可行的先验分布的家族很困难。结果,现有的方法诉诸于元学习限制性对角线高斯先生,严重限制了它们的表现力和性能。为了避免这些问题,我们通过功能性贝叶斯神经网络推断的镜头进行元学习,该镜头将先前视为随机过程,并在功能空间中执行推理。具体而言,我们将元训练任务视为数据生成过程中的样本,并将元学习形式化为经验估算此随机过程的定律。我们的方法可以通过学习数据生成过程边缘的分数函数而不是参数空间先验来无缝获取并代表复杂的先验知识。在全面的基准中,我们证明了我们的方法在预测准确性和不确定性估计质量的实质性改善方面实现了最先进的性能。

Meta-learning aims to extract useful inductive biases from a set of related datasets. In Bayesian meta-learning, this is typically achieved by constructing a prior distribution over neural network parameters. However, specifying families of computationally viable prior distributions over the high-dimensional neural network parameters is difficult. As a result, existing approaches resort to meta-learning restrictive diagonal Gaussian priors, severely limiting their expressiveness and performance. To circumvent these issues, we approach meta-learning through the lens of functional Bayesian neural network inference, which views the prior as a stochastic process and performs inference in the function space. Specifically, we view the meta-training tasks as samples from the data-generating process and formalize meta-learning as empirically estimating the law of this stochastic process. Our approach can seamlessly acquire and represent complex prior knowledge by meta-learning the score function of the data-generating process marginals instead of parameter space priors. In a comprehensive benchmark, we demonstrate that our method achieves state-of-the-art performance in terms of predictive accuracy and substantial improvements in the quality of uncertainty estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源