论文标题
AFLT $ Q $ -MORRIS常数定义身份
The AFLT $q$-Morris constant term identity
论文作者
论文摘要
众所周知,Selberg积分等同于Morris常数项身份。更一般而言,Selberg型积分可以变成lourent多项式的恒定项身份。在本文中,通过扩展laurent系列恒定期限身份的gessel-xin方法,我们获得了一个AFLT型$ q $ -Morris常数术语身份。这是两个麦克唐纳多项式产品的产品的$ q $ -morris类型常数标识。
It is well-known that the Selberg integral is equivalent to the Morris constant term identity. More generally, Selberg type integrals can be turned into constant term identities for Laurent polynomials. In this paper, by extending the Gessel--Xin method of the Laurent series proof of constant term identities, we obtain an AFLT type $q$-Morris constant term identity. That is a $q$-Morris type constant term identity for a product of two Macdonald polynomials.