论文标题
关于位移电流的作用和卡塔内诺定律在等离子体边界层中的作用
On the role of the displacement current and the Cattaneo's law on boundary layers of plasma
论文作者
论文摘要
在本文中,当相应的特征速度相对论时,我们旨在数学上分析位移电流和Cattaneo定律对等离子体边界层理论的作用。我们将分析限制为二维流动,并研究了Navier-Stokes-Maxwell方程的渐近极限,而Cattaneo定律在边界平面线附近,当Hartmann,Reynolds和Magnetic Reynolds数量在成比例地差异到Infinity时。本文的目标是双重的。我们首先表明,Navier-Stokes-Maxwell方程的扩展版导致了一个新的边界层家族,在动量方程式和安培定律上都是双曲线。其次,我们解决了派生方程的良好性,并显示了用于小型初始数据的全局分析解决方案的存在。我们的建模突出显示了哪些无量纲参数的条件允许将提出的系统解释为典型的prandtl或hartmann的边界层。此外,我们的发展表明,与Hartmann有关的条件可能在身体上可以接受。最后,我们的分析表明,卡塔内诺定律和位移电流确实可以根据全球分析解决方案的存在来稳定派生系统。
In the present paper, we aim to mathematically analyse the role of the displacement current and the Cattaneo's law on the boundary-layer theory of plasma, when the corresponding characteristic speed is relativistic. We restrict our analysis to two-dimensional flows and we study the asymptotic limit of the Navier-Stokes-Maxwell equations with Cattaneo's law near a bounding flat line, when the Hartmann, Reynolds and magnetic Reynolds numbers proportionally diverge to infinity. The goal of this paper is twofold. We first show that the extended version of the Navier-Stokes-Maxwell equations leads to a new family of boundary layers, which are hyperbolic both on the momentum equation and the Ampere's law. Secondly, we address the well-posedness of the derived equations and show the existence of global-in-time analytic solutions for small initial data. Our modelling highlights which conditions on the dimensionless parameters allow to interpret the proposed system as boundary layers with thickness typical of Prandtl or Hartmann. Furthermore, our development shows that the conditions related to Hartmann might be more physically acceptable. Finally, our analysis suggests that the Cattaneo's law and the displacement current might indeed stabilise the derived system in terms of existence of global-in-time analytic solutions.