论文标题
CSV3SB5 kagome超导体中的轨道杂交驱动电荷密度波转变
Orbital hybridization-driven charge density wave transition in CsV3Sb5 kagome superconductor
论文作者
论文摘要
由于其固有的非平凡的几何形状,最近发现的Kagome拓扑超导体AV3SB5的独特结构主题是理想的主机,包括多样化的拓扑非平凡的现象,包括巨大的异常霍尔电导率,拓扑电荷秩序,拓扑电荷顺序,充电密度波浪和无条件的超导电性。尽管以拓扑性手性电荷顺序和多样的超导间隙结构的形式拥有正常状态的CDW顺序,但仍不清楚基本原子级特性和多体效应如何如何有助于这些对称性破裂的典型,包括费米表面嵌套,电子表面耦合,轨道杂交有助于这些。在这里,我们报告了V3D-SB5P轨道杂交在介导CSV3SB5中的CDW相变中的直接参与。温度依赖性X射线吸收和第一原理研究的组合清楚地表明,大卫结构的反恒星是低温CDW相中的首选重建。我们的结果强调了SB轨道发挥作用并建立轨道杂交作为CDW状态的直接介体和Kagome非常规超导体中的结构过渡动力学的关键作用。这是朝着对新兴阶段通过轨道相互作用的基本理解和控制相关阶段的基本了解和控制的重要一步,并为非常规秩序和拓扑的新型政权提供了有希望的方法。
Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered Kagome topological superconductor AV3Sb5 is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave, and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, we report the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5. The combination of temperature-dependent X-ray absorption and first principles studies clearly indicate the Inverse Star of David structure as the preferred reconstruction in the low-temperature CDW phase. Our results highlight the critical role that Sb orbitals plays and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in Kagome unconventional superconductors. This is a significant step towards the fundamental understanding and control of the emerging correlated phases from the Kagome lattice through the orbital interactions and provide promising approaches to novel regimes in unconventional orders and topology.