论文标题

常识性推理的检索增强:一种统一的方法

Retrieval Augmentation for Commonsense Reasoning: A Unified Approach

论文作者

Yu, Wenhao, Zhu, Chenguang, Zhang, Zhihan, Wang, Shuohang, Zhang, Zhuosheng, Fang, Yuwei, Jiang, Meng

论文摘要

现有文献中检索式方法的一个共同点集中于检索百科全书知识,例如Wikipedia,它促进了可以建模的定义明确的实体和关系空间。但是,将这种方法应用于常识性推理任务面临两个独特的挑战,即缺乏一般的大规模检索和相应的有效常识性检索器。在本文中,我们系统地研究了如何利用常识性知识检索以改善常识性推理任务。我们提出了一个统一的检索总常识性推理(称为RACO)的统一框架,其中包括一个新建的常识语料库,其中包含超过2000万个文件和新的策略来培训常识犬。我们对四个不同的常识性推理任务进行了实验。广泛的评估结果表明,我们提出的RACO可以极大地超过其他知识增强的方法,从而在公社和吱吱作响的排行榜上实现了新的SOTA性能。

A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源