论文标题
在差异空间和平滑套装以及光滑的OKA原理上的投影模型结构
Projective model structures on diffeological spaces and smooth sets and the smooth Oka principle
论文作者
论文摘要
在本文的第一部分中,我们证明,差异空间的类别不接受通过简单集的平滑奇异复合函数传递的模型结构,而在负面的猜想中,与基哈拉的模型结构相比,在负面的猜想中解决了构建的模型结构,该模型结构是使用不同的单构型函数构建的差异空间上的。接下来,是由量子场理论和拓扑中的应用激励的,我们将差异空间嵌入了光滑歧管位点(不一定是混凝土)的套管中,并研究了通过从简单组合的平滑奇异复合物传递的此类滑轮上的适当组合模型结构。我们将最终的模型类别显示为quillen等效于简单集的模型类别。然后,我们表明该模型结构是笛卡尔,所有平滑的流形都是同伴,并在代数类别上建立了模型结构的存在。最后,我们使用这些结果来建立模型结构的类似特性,以在平滑的歧管上的简单预示中以及在左侧适当组合模型类别中估算的预示,并证明了在Arxiv:1912.10544中建立的平滑OKA原理的概括。我们将这些结果应用于建立差分几何对象的分类定理,例如封闭的微分形式,与连接的主束和更高的捆绑式Gerbes,并在任意同伴的差异空间上连接。
In the first part of the paper, we prove that the category of diffeological spaces does not admit a model structure transferred via the smooth singular complex functor from simplicial sets, resolving in the negative a conjecture of Christensen and Wu, in contrast to Kihara's model structure on diffeological spaces constructed using a different singular complex functor. Next, motivated by applications in quantum field theory and topology, we embed diffeological spaces into sheaves of sets (not necessarily concrete) on the site of smooth manifolds and study the proper combinatorial model structure on such sheaves transferred via the smooth singular complex functor from simplicial sets. We show the resulting model category to be Quillen equivalent to the model category of simplicial sets. We then show that this model structure is cartesian, all smooth manifolds are cofibrant, and establish the existence of model structures on categories of algebras over operads. Finally, we use these results to establish analogous properties for model structures on simplicial presheaves on smooth manifolds, as well as presheaves valued in left proper combinatorial model categories, and prove a generalization of the smooth Oka principle established in arXiv:1912.10544. We apply these results to establish classification theorems for differential-geometric objects like closed differential forms, principal bundles with connection, and higher bundle gerbes with connection on arbitrary cofibrant diffeological spaces.