论文标题

识别遗传疾病的面部表型的元素元学习

Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic Disorders

论文作者

Sümer, Ömer, Hellmann, Fabio, Hustinx, Alexander, Hsieh, Tzung-Chien, André, Elisabeth, Krawitz, Peter

论文摘要

基于计算机视觉的方法在精确医学中具有有价值的用例,并且识别遗传疾病的面部表型就是其中之一。已知许多遗传疾病会影响面部的视觉外观和几何形状。自动分类和相似性检索援助医师在决策中尽早诊断可能的遗传状况。以前的工作将问题作为分类问题,并使用了深度学习方法。实际上,具有挑战性的问题是标签分布稀疏和类别之间的巨大阶级失衡。此外,大多数疾病在培训集中几乎没有标记的样本,这使得表示学习和概括对于获取可靠的特征描述符至关重要。在这项研究中,我们使用了对大型健康个体训练的面部识别模型作为预任务,并将其转移到面部表型识别中。此外,我们创建了一些简单的基线,这些基线几乎没有击中元学习方法来改善我们的基本功能描述符。我们在GestaltMatcher数据库上进行的定量结果表明,我们的CNN基线超过了先前的工作,包括Gestaltmatcher,几乎没有拍摄的元学习策略可改善频繁和罕见类别的检索性能。

Computer vision-based methods have valuable use cases in precision medicine, and recognizing facial phenotypes of genetic disorders is one of them. Many genetic disorders are known to affect faces' visual appearance and geometry. Automated classification and similarity retrieval aid physicians in decision-making to diagnose possible genetic conditions as early as possible. Previous work has addressed the problem as a classification problem and used deep learning methods. The challenging issue in practice is the sparse label distribution and huge class imbalances across categories. Furthermore, most disorders have few labeled samples in training sets, making representation learning and generalization essential to acquiring a reliable feature descriptor. In this study, we used a facial recognition model trained on a large corpus of healthy individuals as a pre-task and transferred it to facial phenotype recognition. Furthermore, we created simple baselines of few-shot meta-learning methods to improve our base feature descriptor. Our quantitative results on GestaltMatcher Database show that our CNN baseline surpasses previous works, including GestaltMatcher, and few-shot meta-learning strategies improve retrieval performance in frequent and rare classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源