论文标题
部分可观测时空混沌系统的无模型预测
Binary sequences with a low correlation via cyclotomic function fields with odd characteristics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Sequences with a low correlation have very important applications in communications, cryptography, and compressed sensing. In the literature, many efforts have been made to construct good sequences with various lengths where binary sequences attracts great attention. As a result, various constructions of good binary sequences have been proposed. However, most of the known constructions made use of the multiplicative cyclic group structure of finite field $\mathbb{F}_{p^n}$ for a prime $p$ and a positive integer $n$. In fact, all $p^n+1$ rational places including the place at infinity of the rational function field over $\mathbb{F}_{p^n}$ form a cyclic structure under an automorphism of order $p^n+1$. In this paper, we make use of this cyclic structure to provide an explicit construction of binary sequences with a low correlation of length $p^n+1$ via cyclotomic function fields over $\mathbb{F}_{p^n}$ for any odd prime $p$. Each family of binary sequences has size $p^n-2$ and its correlation is upper bounded by $4+\lfloor 2\cdot p^{n/2}\rfloor$. To the best of our knowledge, this is the first construction of binary sequences with a low correlation of length $p^n+1$ for odd prime $p$. Moreover, our sequences can be constructed explicitly and have competitive parameters.