论文标题

部分可观测时空混沌系统的无模型预测

Positively curved Finsler metrics on vector bundles II

论文作者

Wu, Kuang-Ru

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We show that if $E$ is an ample vector bundle of rank at least two with some curvature bound on $O_{P(E^*)}(1)$, then $E^*\otimes \det E$ is Kobayashi positive. The proof relies on comparing the curvature of $(\det E^*)^k$ and $S^kE$ for large $k$ and using duality of convex Finsler metrics. Following the same thread of thought, we show if $E$ is ample with similar curvature bounds on $O_{P(E^*)}(1)$ and $O_{P(E\otimes \det E^*)}(1)$, then $E$ is Kobayashi positive. With additional assumptions, we can furthermore show that $E^*\otimes \det E$ and $E$ are Griffiths positive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源