论文标题

部分可观测时空混沌系统的无模型预测

Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities

论文作者

Dolbeault, Jean, Zuniga, Andres

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

On the Euclidean space, we establish some Weighted Logarithmic Sobolev (WLS) inequalities. We characterize a symmetry range in which optimal functions are radially symmetric, and a symmetry breaking range. (WLS) inequalities are a limit case for a family of subcritical Caffarelli-Kohn-Nirenberg (CKN) inequalities with similar symmetry properties. A generalized carré du champ method applies not only to the optimal solution of the nonlinear elliptic Euler-Lagrange equation and proves a rigidity result as for (CKN) inequalities, but also to entropy type estimates, with the full strength of the carré du champ method in a parabolic setting. This is a significant improvement on known results for (CKN). Finally, we briefly sketch some consequences of our results for the weighted diffusion flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源