论文标题

Pauli Term诱导的固定点在$ D $二维Qed中

Pauli-Term-Induced Fixed Points in $d$-dimensional QED

论文作者

Gies, Holger, Tam, Kevin K. K., Ziebell, Jobst

论文摘要

我们在包含保利自旋场耦合时探讨了类似QED的理论的固定点结构。我们专注于最近在$ d = 4 $时空尺寸的UV稳定固定点的命运上,概括了较低的较低和较高的尺寸,以及任意数量的费米风味$ n_ \ mathrm {f} $。作为总体趋势,我们观察到,从$ d = 4 $尺寸和增加的风味数量往往会破坏在四个时空维度中发现的非高斯固定点的稳定。一个值得注意的例外是有限的Pauli Spin-Field耦合的非高斯固定点,但消失的量规耦合,该耦合的量度也保持稳定至$ d = 3 $尺寸,对于小风味。这还包括在分层凝结物系统的有效理论中使用的一系列自由度范围。作为一种应用,我们构建了从非高斯固定点散发出的重新归一化组轨迹,并在传统的Qed $ {} _ 3 $通用类中接近远程制度,该类别由相互作用(Quasi)固定点在量规耦合中控制。

We explore the fixed-point structure of QED-like theories upon the inclusion of a Pauli spin-field coupling. We concentrate on the fate of UV-stable fixed points recently discovered in $d=4$ spacetime dimensions upon generalizations to lower as well as higher dimensions for an arbitrary number of fermion flavors $N_\mathrm{f}$. As an overall trend, we observe that going away from $d=4$ dimensions and increasing the flavor number tends to destabilize the non-Gaussian fixed points discovered in four spacetime dimensions. A notable exception is a non-Gaussian fixed point at finite Pauli spin-field coupling but vanishing gauge coupling, which also remains stable down to $d=3$ dimensions and for small flavor numbers. This includes also the range of degrees of freedom used in effective theories of layered condensed-matter systems. As an application, we construct renormalization group trajectories that emanate from the non-Gaussian fixed point and approach a long-range regime in the conventional QED${}_3$ universality class that is governed by the interacting (quasi) fixed point in the gauge coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源