论文标题
MNEDGENET- MN XAS和EELS L2,3边缘的混合氧化态的精确分解,无参考和校准
MnEdgeNet -- Accurate Decomposition of Mixed Oxidation States for Mn XAS and EELS L2,3 Edges without Reference and Calibration
论文作者
论文摘要
混合Mn氧化态的准确分解对于表征包含MN的电子,电催化和储能材料的电子结构,电荷转移和氧化还原中心非常重要。电子能量损失光谱(EEL)和软X射线吸收光谱(XAS)测量Mn L2,3边缘被广泛用于此目的。迄今为止,尽管鉴于样品的制备正确制备了MN L2,3边缘的测量值,但MN的混合价状态的准确分解仍然是非平凡的。对于鳗鱼和XAS,2+,3+,4+参考光谱都需要在同一仪器/梁线上进行,最好在同一实验会议上进行,因为仪器分辨率和能量轴的偏移可能因一个阶段而异。为了避免这一障碍,在这项研究中,我们采用了一种深度学习方法,并开发了一种无校准和无参考的方法,用于分解鳗鱼和XAS的Mn L2,3边缘的氧化态。为了综合物理知识和地面标记的训练数据集,我们创建了一个正向模型,该模型考虑了复数散射,仪器扩展,噪声和能量轴的偏移。因此,我们创建了一个具有三元素氧化状态组成标签的120万个光谱数据库。该库包括足够多种数据,包括鳗鱼和XAS光谱。通过对这个大数据库的培训,我们的卷积神经网络在验证数据集上的准确性为85%。我们测试了该模型,发现它具有强大的噪声(降至10的PSNR)和复数散射(最高为t/λ= 1)。我们进一步验证了未在训练中未使用的光谱数据的模型。
Accurate decomposition of the mixed Mn oxidation states is highly important for characterizing the electronic structures, charge transfer, and redox centers for electronic, electrocatalytic, and energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. To date, although the measurement of the Mn L2,3 edges is straightforward given the sample is prepared properly, an accurate decomposition of the mix valence states of Mn remains non-trivial. For both EELS and XAS, 2+, 3+, 4+ reference spectra need to be taken on the same instrument/beamline and preferably in the same experimental session because the instrumental resolution and the energy axis offset could vary from one session to another. To circumvent this hurdle, in this study, we adopted a deep learning approach and developed a calibration-free and reference-free method to decompose the oxidation state of Mn L2,3 edges for both EELS and XAS. To synthesize physics-informed and ground-truth labeled training datasets, we created a forward model that takes into account plural scattering, instrumentation broadening, noise, and energy axis offset. With that, we created a 1.2 million-spectrum database with a three-element oxidation state composition label. The library includes a sufficient variety of data including both EELS and XAS spectra. By training on this large database, our convolutional neural network achieves 85% accuracy on the validation dataset. We tested the model and found it is robust against noise (down to PSNR of 10) and plural scattering (up to t/λ = 1). We further validated the model against spectral data that were not used in training.