论文标题
具有非对称核物质的核饱和参数的中子星级质量公式
Neutron star mass formula with nuclear saturation parameters for asymmetric nuclear matter
论文作者
论文摘要
低质量中子星与核饱和参数直接相关,因为它们的中央密度肯定很低。我们已经找到了用于表达中子星级质量和重力红移的合适组合,即$η\ equiv(k_0l^2)^{1/3} $与对称核物质的不可压缩性,$ k_0 $,$ k_0 $,以及依赖于密度的核对称能量,$ l $。在这项研究中,我们新发现了另一种合适的组合,由$η_τ\ equiv(-k_τl^5)^{1/6} $,具有异种依赖性对非对称核物质的依赖性,$k_τ$,并得出了中子星质量和重力红色的经验关系,作为$ $ $η__的函数和η_的函数和η_的函数和η_pressitive $η_的函数和正常值。借助这些经验关系,可以评估中子恒星的质量和重力红移,中子恒星的中心数密度小于饱和密度的三倍,在$ \ sim 10 \%$ $精度之内,而半径则在几个\%精度之内。此外,我们使用经验关系以及天文学观察结果讨论了陆地实验中的中子恒星质量和半径约束。此外,我们发现$η_τ$和$η$之间的密切相关性。有了此相关性,我们将$ -348 \ lek_τ\ le -237 $ meV得出$k_τ$的约束,假设$ l = 60 \ pm 20 $和$ k_0 = 240 \ pm 20 $ mev。
Low-mass neutron stars are directly associated with the nuclear saturation parameters because their central density is definitely low. We have already found a suitable combination of nuclear saturation parameters for expressing the neutron star mass and gravitational redshift, i.e., $η\equiv (K_0L^2)^{1/3}$ with the incompressibility for symmetric nuclear matter, $K_0$, and the density-dependent nuclear symmetry energy, $L$. In this study, we newly find another suitable combination given by $η_τ\equiv (-K_τL^5)^{1/6}$ with the isospin dependence of incompressibility for asymmetric nuclear matter, $K_τ$, and derive the empirical relations for the neutron star mass and gravitational redshift as a function of $η_τ$ and the normalized central number density. With these empirical relations, one can evaluate the mass and gravitational redshift of the neutron star, whose central number density is less than threefold the saturation density, within $\sim 10\%$ accuracy, and the radius within a few \% accuracies. In addition, we discuss the neutron star mass and radius constraints from the terrestrial experiments, using the empirical relations, together with those from the astronomical observations. Furthermore, we find a tight correlation between $η_τ$ and $η$. With this correlation, we derive the constraint on $K_τ$ as $-348\le K_τ\le -237$ MeV, assuming that $L=60\pm 20$ and $K_0=240\pm 20$ MeV.