论文标题
图形模型推断具有透明测量的数据
Graphical Model Inference with Erosely Measured Data
论文作者
论文摘要
在本文中,我们在一种新的环境中研究了高斯图形模型推断问题,我们称之为erose测量值,指的是不规则测量或观察到的数据。对于图,这会导致不同的节点对具有截然不同的样本量,这些样本量经常在数据整合,基因组学,神经科学和传感器网络中产生。现有的作品是使用最小成对样本量表征图形选择性能的,这几乎没有针对被侵蚀测量的数据的见解,并且不适用现有推理方法。我们的目的是通过提出第一种推理方法来填补这一空白,该方法表征了由EROSE测量引起的图表(名为Gi-Joe)所引起的图表(当关节观测时图推断)。具体而言,我们开发了一种边缘推理方法和一个附属的FDR控制过程,其中每个边的方差取决于与相应邻居关联的样本量。由于仔细的局部边缘分析并阐明了整个图的依赖关系,因此我们证明了在EROSE测量下的统计有效性。最后,通过仿真研究和真实的神经科学数据示例,我们证明了从详细测量数据中选择图的推理方法的优势。
In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.