论文标题
使用功能性主成分分析的推论和预测:在慢性肾功能不全队列(CRIC)研究中应用于糖尿病肾脏疾病进展
Inference and Prediction Using Functional Principal Components Analysis: Application to Diabetic Kidney Disease Progression in the Chronic Renal Insufficiency Cohort (CRIC) Study
论文作者
论文摘要
反复的纵向测量通常用于模拟长期疾病进展,并且每位患者的时间和评估数可能会有所不同,导致数据不规则且稀疏。纵向轨迹可能表现出曲线模式,其中混合线性回归方法可能无法捕获数据中的真实趋势。我们将功能性主成分分析应用于通过估计的肾小球滤过率(EGFR)轨迹来模拟肾脏疾病进展。在慢性肾功能不全队列(CRIC)研究的2641名参与者和长达15年的年度随访中,我们检测到了由白蛋白尿症的存在定义的亚组中的糖尿病肾脏疾病(DKD)进展的新型变异模式。我们进行了推论置换测试,以评估组之间纵向EGFR模式的差异。为了确定拟合完整的队列模型或单独的组特异性模型对于建模长期轨迹更为最佳,我们使用我们的拟合方法和未来的预测准确性评估了模型拟合度。我们的发现表明,在实现不同的目标方面,两种建模方法都具有优势。除了DKD之外,所描述的方法适用于其他具有纵向评估的生物标志物作为疾病进展指标的环境。本文的补充材料可在线获得。
Repeated longitudinal measurements are commonly used to model long-term disease progression, and timing and number of assessments per patient may vary, leading to irregularly spaced and sparse data. Longitudinal trajectories may exhibit curvilinear patterns, in which mixed linear regression methods may fail to capture true trends in the data. We applied functional principal components analysis to model kidney disease progression via estimated glomerular filtration rate (eGFR) trajectories. In a cohort of 2641 participants with diabetes and up to 15 years of annual follow-up from the Chronic Renal Insufficiency Cohort (CRIC) study, we detected novel dominant modes of variation and patterns of diabetic kidney disease (DKD) progression among subgroups defined by the presence of albuminuria. We conducted inferential permutation tests to assess differences in longitudinal eGFR patterns between groups. To determine whether fitting a full cohort model or separate group-specific models is more optimal for modeling long-term trajectories, we evaluated model fit, using our goodness-of-fit procedure, and future prediction accuracy. Our findings indicated advantages for both modeling approaches in accomplishing different objectives. Beyond DKD, the methods described are applicable to other settings with longitudinally assessed biomarkers as indicators of disease progression. Supplementary materials for this article are available online.