论文标题
Confmix:通过基于置信的混合的对象检测的无监督域适应
ConfMix: Unsupervised Domain Adaptation for Object Detection via Confidence-based Mixing
论文作者
论文摘要
对象检测的无监督域适应(UDA)旨在调整在源域上训练的模型,以从无法提供注释的新目标域检测实例。与传统方法不同,我们提出了Confmix,这是第一种基于自适应对象检测器学习的区域级检测信心引入样本混合策略的方法。我们将目标样本的局部区域与源图像相对应的目标样本的局部区域,并应用额外的一致性损失项逐渐适应目标数据分布。为了稳健地定义一个区域的置信度评分,我们利用每个伪检测的置信度得分,这些检测既是检测器依赖的置信度和边界盒不确定性。此外,我们提出了一种新型的伪标记方案,该方案使用置信度度量逐渐滤除了伪目标检测,该置信度指标从训练沿训练沿宽松到严格的方式变化。我们使用三个数据集进行了广泛的实验,在其中两个数据集中实现了最先进的性能,并在另一个数据集中实现了监督目标模型的性能。代码可在以下网址找到:https://github.com/giuliomattolin/confmix。
Unsupervised Domain Adaptation (UDA) for object detection aims to adapt a model trained on a source domain to detect instances from a new target domain for which annotations are not available. Different from traditional approaches, we propose ConfMix, the first method that introduces a sample mixing strategy based on region-level detection confidence for adaptive object detector learning. We mix the local region of the target sample that corresponds to the most confident pseudo detections with a source image, and apply an additional consistency loss term to gradually adapt towards the target data distribution. In order to robustly define a confidence score for a region, we exploit the confidence score per pseudo detection that accounts for both the detector-dependent confidence and the bounding box uncertainty. Moreover, we propose a novel pseudo labelling scheme that progressively filters the pseudo target detections using the confidence metric that varies from a loose to strict manner along the training. We perform extensive experiments with three datasets, achieving state-of-the-art performance in two of them and approaching the supervised target model performance in the other. Code is available at: https://github.com/giuliomattolin/ConfMix.