论文标题

在限制量子误差的局限性方面呈指数加紧

Exponentially tighter bounds on limitations of quantum error mitigation

论文作者

Quek, Yihui, França, Daniel Stilck, Khatri, Sumeet, Meyer, Johannes Jakob, Eisert, Jens

论文摘要

已经提出了缓解量子误差,以此作为对近期量子计算中不必要和不可避免的错误的一种手段,而无需故障耐受方案所要求的大量资源开销。最近,已成功应用了缓解错误以减少近期应用中的噪声。但是,在这项工作中,我们确定了对较大系统尺寸有效“撤消”的程度的强大局限性。我们的框架严格捕获了当今使用的大量减轻错误缓解方案。通过将误差缓解与统计推断问题相关,我们表明,即使在与当前实验相当的浅回路深度下,在最坏情况下,也需要一个超多种样本的样本来估计无噪声可观察到的预期值,即主要缓解误差的主要任务。值得注意的是,我们的构建意味着,由于噪音而造成的争夺可以比以前想象的要小的深度启动。它们还影响了其他近期应用,从而限制了量子机学习中的内核估计,从而导致差异量子算法中噪声引起的贫瘠的贫瘠高原的出现,并排除指数量子的速度加速,从而在存在噪声或制备吉尔顿顿的基础状态下估计预期值。

Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable errors in near-term quantum computing without the heavy resource overheads required by fault tolerant schemes. Recently, error mitigation has been successfully applied to reduce noise in near-term applications. In this work, however, we identify strong limitations to the degree to which quantum noise can be effectively `undone' for larger system sizes. Our framework rigorously captures large classes of error mitigation schemes in use today. By relating error mitigation to a statistical inference problem, we show that even at shallow circuit depths comparable to the current experiments, a superpolynomial number of samples is needed in the worst case to estimate the expectation values of noiseless observables, the principal task of error mitigation. Notably, our construction implies that scrambling due to noise can kick in at exponentially smaller depths than previously thought. They also impact other near-term applications, constraining kernel estimation in quantum machine learning, causing an earlier emergence of noise-induced barren plateaus in variational quantum algorithms and ruling out exponential quantum speed-ups in estimating expectation values in the presence of noise or preparing the ground state of a Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源