论文标题

多模式神经网络的需求预测

Multimodal Neural Network For Demand Forecasting

论文作者

Kumar, Nitesh, Dheenadayalan, Kumar, Reddy, Suprabath, Kulkarni, Sumant

论文摘要

需求预测应用程序已从用于时间序列预测的最先进的深度学习方法中受益匪浅。传统的大学模型主要是季节性驱动的,它试图将需求与历史销售的函数以及节假日和促销活动的信息建模。但是,准确而强大的销售预测要求适应其他多种因素,例如自然灾害,大流行,选举等,从而影响了对产品和产品类别的需求。我们提出了一个多模式销售预测网络,该网络将新闻文章的真实事件与传统数据(例如历史销售和假日信息)相结合。此外,我们融合了Google趋势发布的一般产品趋势的信息。经验结果表明,对于现有的超级市场数据集中的现有最新销售预测技术,SMAPE误差度量标准的统计显着改善,平均提高了7.37%。

Demand forecasting applications have immensely benefited from the state-of-the-art Deep Learning methods used for time series forecasting. Traditional uni-modal models are predominantly seasonality driven which attempt to model the demand as a function of historic sales along with information on holidays and promotional events. However, accurate and robust sales forecasting calls for accommodating multiple other factors, such as natural calamities, pandemics, elections, etc., impacting the demand for products and product categories in general. We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information. Further, we fuse information from general product trends published by Google trends. Empirical results show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques on a real-world supermarket dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源