论文标题

G2NETPL:针对部分标签图像分类的通用游戏理论网络

G2NetPL: Generic Game-Theoretic Network for Partial-Label Image Classification

论文作者

Abdelfattah, Rabab, Zhang, Xin, Fouda, Mostafa M., Wang, Xiaofeng, Wang, Song

论文摘要

多标签图像分类旨在预测图像中的所有可能标签。通常将其作为部分标签的学习问题,因为在实际上,注释每个培训图像中的所有标签可能很昂贵。关于部分标签学习的现有作品集中在每个训练图像仅标记其正/负标签的子集的情况下。为了有效解决部分标签分类,本文提出了用于部分标签学习的端到端通用游戏理论网络(G2NETPL),可以应用于大多数部分标签的设置,包括一个非常具有挑战性的,且有效的良好情况,只有一个训练图像的子集都被标记为一个良好的训练,同时又有一个良好的训练图像,同时又有一个良好的训练图像。在G2NETPL中,每个未观察到的标签都与柔软的伪标签相关联,该标签与网络一起制定了两人非零和非合作游戏。该网络的目的是用给定的伪标签最大程度地减少损失函数,而伪标签将寻求收敛到1(正)或0(负),并与网络确定的预测标签偏离。此外,我们还将一个信心的调度程序引入网络的损失,以适应性地对不同标签进行易于锻炼的学习。广泛的实验表明,我们提出的G2NETPL优于在三个不同数据集上的各种部分标签设置下的许多最先进的多标签分类方法。

Multi-label image classification aims to predict all possible labels in an image. It is usually formulated as a partial-label learning problem, since it could be expensive in practice to annotate all the labels in every training image. Existing works on partial-label learning focus on the case where each training image is labeled with only a subset of its positive/negative labels. To effectively address partial-label classification, this paper proposes an end-to-end Generic Game-theoretic Network (G2NetPL) for partial-label learning, which can be applied to most partial-label settings, including a very challenging, but annotation-efficient case where only a subset of the training images are labeled, each with only one positive label, while the rest of the training images remain unlabeled. In G2NetPL, each unobserved label is associated with a soft pseudo label, which, together with the network, formulates a two-player non-zero-sum non-cooperative game. The objective of the network is to minimize the loss function with given pseudo labels, while the pseudo labels will seek convergence to 1 (positive) or 0 (negative) with a penalty of deviating from the predicted labels determined by the network. In addition, we introduce a confidence-aware scheduler into the loss of the network to adaptively perform easy-to-hard learning for different labels. Extensive experiments demonstrate that our proposed G2NetPL outperforms many state-of-the-art multi-label classification methods under various partial-label settings on three different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源