论文标题

Stirling置换代码

Stirling permutation codes

论文作者

Ma, Shi-Mei, Qi, Hao, Yeh, Jean, Yeh, Yeong-Nan

论文摘要

二阶Eulerian多项式理论的发展始于Buckholtz和Carlitz在研究渐近扩张的研究中的作品。 Gessel-Stanley引入了Stirling排列,并提出了二阶Eulerian多项式的组合解释。最近,对斯特林排列的性质越来越感兴趣。本文的动机是开发一种通用方法,以查找有关Stirling排列的等分分配统计数据。首先,我们表明,上下对统计量与上升 - 平原统计量相等,并且外部上向上对统计量与左Ascent-Plateau统计量相等。其次,我们介绍了Stirling置换代码。简单的应用程序遵循了几个等分分配结果。特别是,我们发现六个双变量设置值统计量被等待在Stirling排列的集合中。作为应用程序,我们扩展了Dumont和Bona独立建立的经典结果。第三,我们探索了Stirling置换代码,完美匹配和梯形词之间的射击。然后,我们通过左Ascent-Plateaux,外部向下对置和右平台示例显示了Stirling排列的枚举者的电子积极性。在最后一部分中,建立了多元k-th阶的欧拉级多项式的电子积极性,这改善了Janson-Kuba-Panholzer的结果,并概述了Chen-Fu的最新结果。

The development of the theories of the second-order Eulerian polynomials began with the works of Buckholtz and Carlitz in their studies of an asymptotic expansion. Gessel-Stanley introduced Stirling permutations and presented combinatorial interpretations of the second-order Eulerian polynomials. Recently, there is a growing interest in the properties of Stirling permutations. The motivation of this paper is to develop a general method for finding equidistributed statistics on Stirling permutations. Firstly, we show that the up-down-pair statistic is equidistributed with ascent-plateau statistic, and that the exterior up-down-pair statistic is equidistributed with left ascent-plateau statistic. Secondly, we introduce the Stirling permutation codes. Several equidistribution results follow from simple applications. In particular, we find that six bivariable set-valued statistics are equidistributed on the set of Stirling permutations. As an application, we extend a classical result independently established by Dumont and Bona. Thirdly, we explore bijections among Stirling permutation codes, perfect matchings and trapezoidal words. We then show the e-positivity of the enumerators of Stirling permutations by left ascent-plateaux, exterior up-down-pairs and right plateau-descents. In the final part, the e-positivity of the multivariate k-th order Eulerian polynomials is established, which improves a result of Janson-Kuba-Panholzer and generalizes a recent result of Chen-Fu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源