论文标题

多目标QUBO解决标量技术的研究

A Study of Scalarisation Techniques for Multi-Objective QUBO Solving

论文作者

Ayodele, Mayowa, Allmendinger, Richard, López-Ibáñez, Manuel, Parizy, Matthieu

论文摘要

近年来,人们对解决二次无约束二进制优化(QUBO)问题的研究兴趣很大。已经提出了以物理启发的优化算法将最佳或优化溶液推导到Qubos。在使用专业硬件的背景下,这些方法特别有吸引力,例如量子计算机,特定的CMO和其他高性能计算资源来解决优化问题。然后将这些求解器应用于组合优化问题的QUBO公式。当应用于学术基准以及现实世界中的问题时,量子和量子启发的优化算法已显示出有希望的性能。但是,QUBO求解器是单个目标求解器。为了使他们更有效地通过多个目标解决问题,需要解决如何将此类多目标问题转换为单目标问题的决定。在这项研究中,我们将得出标态权重的方法结合到基础性的两个目标时,将均值变化投资组合优化问题结合在一起。与使用均匀生成的重量相比,使用迭代填充帕累托前部最大空间的方法时,我们显示出显着的性能改善(用超量衡量)。

In recent years, there has been significant research interest in solving Quadratic Unconstrained Binary Optimisation (QUBO) problems. Physics-inspired optimisation algorithms have been proposed for deriving optimal or sub-optimal solutions to QUBOs. These methods are particularly attractive within the context of using specialised hardware, such as quantum computers, application specific CMOS and other high performance computing resources for solving optimisation problems. These solvers are then applied to QUBO formulations of combinatorial optimisation problems. Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems. However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made. In this study, we compare methods of deriving scalarisation weights when combining two objectives of the cardinality constrained mean-variance portfolio optimisation problem into one. We show significant performance improvement (measured in terms of hypervolume) when using a method that iteratively fills the largest space in the Pareto front compared to a näive approach using uniformly generated weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源