论文标题

关于智能卫星星座操作的自动化,优化和轨道验证

On the Automation, Optimization, and In-Orbit Validation of Intelligent Satellite Constellation Operations

论文作者

Stock, Gregory, Fraire, Juan A., Hermanns, Holger, Cruz, Eduardo, Isaacs, Alastair, Imbrosh, Zhana

论文摘要

技术的最新突破导致低地球轨道(LEO)的“新空间”文化蓬勃发展,在该轨道(LEO)中,绩效和成本考虑因素在弹性和可靠性作为任务目标上占主导地位。这些进步为新的研究和商业模式创造了一系列机会,但带来了许多引人注目的新挑战。特别是,低地球轨道小卫星的尺寸和重量限制使他们的成功操作取决于太阳能输液与任务有效负载和支持平台技术的功率需求之间的良好平衡,并由车载电池存储缓冲。同时,这些卫星被推出,这是越来越大的星座和巨型构造的一部分。总的来说,这引起了许多与反复出现的必要性有关的具有挑战性的计算问题,以决定每个卫星要进行哪个任务。在这种背景下,Gomspace和Saarland University联合起来,开发了植根于最佳算法和自我改善学习技术的高度复杂的基于软件的自动化解决方案,所有这些在现代纳米卫星网络网络任务中都验证了。

Recent breakthroughs in technology have led to a thriving "new space" culture in low-Earth orbit (LEO) in which performance and cost considerations dominate over resilience and reliability as mission goals. These advances create a manifold of opportunities for new research and business models but come with a number of striking new challenges. In particular, the size and weight limitations of low-Earth orbit small satellites make their successful operation rest on a fine balance between solar power infeed and the power demands of the mission payload and supporting platform technologies, buffered by on-board battery storage. At the same time, these satellites are being rolled out as part of ever-larger constellations and mega-constellations. Altogether, this induces a number of challenging computational problems related to the recurring need to make decisions about which task each satellite is to effectuate next. Against this background, GomSpace and Saarland University have joined forces to develop highly sophisticated software-based automated solutions rooted in optimal algorithmic and self-improving learning techniques, all this validated in modern nanosatellite networked missions operating in orbit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源