论文标题
赢得Formula学生无人驾驶比赛的软件堆栈
The Software Stack That Won the Formula Student Driverless Competition
论文作者
论文摘要
该报告描述了我们设计和评估能够在Formula Studentless的不同学科中实现竞争性驾驶表现的赛车的软件堆栈的方法。通过使用360°LIDAR和三台摄像机,我们可靠地识别出在距离约35 m处的轨道边界的塑料锥,从而使我们能够在汽车的物理极限下行驶。使用GraphSlam算法,我们能够在狭窄的轨道上以超过70 kph的速度驾驶时,用根平方误差小于15 cm绘制这些锥体。高精度图用于轨迹计划,用于使用Delaunay三角剖分和参数立方样条检测车道边界。我们使用最小曲率方法以及GGS数字来计算优化的轨迹,该方法将空气动力学以不同的速度考虑在内。为了以高达1.6 g的加速度跟踪目标路径,将控制系统分为PI控制器,用于纵向控制和模型预测控制器以进行横向控制。此外,还使用低级最佳控制分配。该软件在ROS C ++中实现,并在自定义模拟以及实际赛车轨道上进行了测试。
This report describes our approach to design and evaluate a software stack for a race car capable of achieving competitive driving performance in the different disciplines of the Formula Student Driverless. By using a 360° LiDAR and optionally three cameras, we reliably recognize the plastic cones that mark the track boundaries at distances of around 35 m, enabling us to drive at the physical limits of the car. Using a GraphSLAM algorithm, we are able to map these cones with a root-mean-square error of less than 15 cm while driving at speeds of over 70 kph on a narrow track. The high-precision map is used in the trajectory planning to detect the lane boundaries using Delaunay triangulation and a parametric cubic spline. We calculate an optimized trajectory using a minimum curvature approach together with a GGS-diagram that takes the aerodynamics at different velocities into account. To track the target path with accelerations of up to 1.6 g, the control system is split into a PI controller for longitudinal control and model predictive controller for lateral control. Additionally, a low-level optimal control allocation is used. The software is realized in ROS C++ and tested in a custom simulation, as well as on the actual race track.