论文标题

捆绑建议的数据提出的反事实学习

Data-Augmented Counterfactual Learning for Bundle Recommendation

论文作者

Zhu, Shixuan, Shen, Qi, Zhang, Yiming, Dong, Zhenwei, Wei, Zhihua

论文摘要

Bundle推荐(BR)旨在推荐在线内容或电子商务平台上的捆绑项目,例如音乐平台上的歌曲列表或阅读网站上的书籍列表。几种基于图的模型已经在BR任务上实现了最先进的性能。但是它们的性能仍然是最佳的,因为在实际捆绑捆绑建议方案中,数据稀少性问题往往更为严重,这将基于图形的模型限制在更充分的学习中。在本文中,我们提出了一种新的图形学习范式,称为捆绑建议(CLBR),以减轻数据稀疏问题的影响并改善捆绑包建议。我们的范式包括两个主要部分:反事实数据增强和反事实约束。我们范式的主要思想在于回答反事实问题:“用户的互动历史记录改变了什么?” “如果捆绑项目的隶属关系发生变化,用户将与什么交互?”在反事实数据增强中,我们设计了一个启发式采样器来为基于图的模型生成反事实图视图,该模型比随机采样器具有更好的噪声控制。我们进一步提出反事实损失,以限制模型学习,以减轻残留噪声在增强数据中的影响并实现更充分的模型优化。进一步的理论分析证明了我们设计的合理性。使用我们的范式应用在两个现实世界数据集上的BR模型进行了广泛的实验,以验证范式的有效性。

Bundle Recommendation (BR) aims at recommending bundled items on online content or e-commerce platform, such as song lists on a music platform or book lists on a reading website. Several graph based models have achieved state-of-the-art performance on BR task. But their performance is still sub-optimal, since the data sparsity problem tends to be more severe in real bundle recommendation scenarios, which limits graph-based models from more sufficient learning. In this paper, we propose a novel graph learning paradigm called Counterfactual Learning for Bundle Recommendation (CLBR) to mitigate the impact of data sparsity problem and improve bundle recommendation. Our paradigm consists of two main parts: counterfactual data augmentation and counterfactual constraint. The main idea of our paradigm lies in answering the counterfactual questions: "What would a user interact with if his/her interaction history changes?" "What would a user interact with if the bundle-item affiliation relations change?" In counterfactual data augmentation, we design a heuristic sampler to generate counterfactual graph views for graph-based models, which has better noise controlling than the stochastic sampler. We further propose counterfactual loss to constrain model learning for mitigating the effects of residual noise in augmented data and achieving more sufficient model optimization. Further theoretical analysis demonstrates the rationality of our design. Extensive experiments of BR models applied with our paradigm on two real-world datasets are conducted to verify the effectiveness of the paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源