论文标题

端到端实体检测提案者和回归剂

End-to-End Entity Detection with Proposer and Regressor

论文作者

Wen, Xueru, Zhou, Changjiang, Tang, Haotian, Liang, Luguang, Jiang, Yu, Qi, Hong

论文摘要

命名实体识别是自然语言处理中的一项传统任务。特别是,嵌套实体识别受到广泛关注嵌套场景的广泛存在。最新的研究迁移了良好的对象检测中设定预测的范式,以应对实体嵌套。但是,在上下文中无法适应丰富的语义信息的查询矢量的手动创建限制了这些方法。本文提出了一种用提议者和回归剂的端到端实体检测方法,以解决这些问题。首先,提议者利用特征金字塔网络来生成高质量的实体建议。然后,回归器完善了生成最终预测的建议。该模型采用了仅共同体系结构,因此获得了查询语义的丰富性,实体本地化的高精度以及模型培训的简单性的优势。此外,我们介绍了新型的空间调节注意力和进行性改进以进一步改进。广泛的实验表明,我们的模型在扁平和嵌套的NER中实现了高级性能,在GENIA数据集中获得了80.74的新最新F1分数,而在Weiboner数据集中达到了72.38。

Named entity recognition is a traditional task in natural language processing. In particular, nested entity recognition receives extensive attention for the widespread existence of the nesting scenario. The latest research migrates the well-established paradigm of set prediction in object detection to cope with entity nesting. However, the manual creation of query vectors, which fail to adapt to the rich semantic information in the context, limits these approaches. An end-to-end entity detection approach with proposer and regressor is presented in this paper to tackle the issues. First, the proposer utilizes the feature pyramid network to generate high-quality entity proposals. Then, the regressor refines the proposals for generating the final prediction. The model adopts encoder-only architecture and thus obtains the advantages of the richness of query semantics, high precision of entity localization, and easiness of model training. Moreover, we introduce the novel spatially modulated attention and progressive refinement for further improvement. Extensive experiments demonstrate that our model achieves advanced performance in flat and nested NER, achieving a new state-of-the-art F1 score of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源