论文标题

加洛伊斯的表示形式在一个元素上被淘汰,并且图像适当的图像

Galois representations ramified at one prime and with suitably large image

论文作者

Ray, Anwesh

论文摘要

令$ p \ geq 7 $为素数,$ n> 1 $是自然数字。我们表明,存在无限的许多galois表示$ \ varrho:gal(\ bar {\ mathbb {q}}}/\ mathbb {q})\ rightArrow gl_ {n}(\ mathbb {z} _p)更准确地说,构建的Galois表示的图像包含Mod- $ P^T $还原映射$ sl_n(\ Mathbb {z} _p)\ rightArrow sl_n(\ Mathbb {z}/p^t \ thbb {z}} $ log_p(2^n+1)\ rfloor \ right)+8 $。结果通过纯粹的Galois理论提升结构证明。当$ p \ equiv 1 \ mod {4} $时,我们的结果是有条件的,因为在这种情况下,我们假设Vandiver的猜想非常弱。

Let $p\geq 7$ be a prime and $n>1$ be a natural number. We show that there exist infinitely many Galois representations $\varrho:Gal(\bar{\mathbb{Q}}/\mathbb{Q})\rightarrow GL_{n}(\mathbb{Z}_p)$ which are unramified outside $\{p, \infty\}$ with large image. More precisely, the Galois representations constructed have image containing the kernel of the mod-$p^t$ reduction map $SL_n(\mathbb{Z}_p)\rightarrow SL_n(\mathbb{Z}/p^t\mathbb{Z})$, where $t:=8(n^2-n)\left(3+\lfloor log_p(2^n+1)\rfloor\right)+8$. The results are proven via a purely Galois theoretic lifting construction. When $p\equiv 1\mod{4}$, our results are conditional since in this case, we assume a very weak version of Vandiver's conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源